

Typesetting Guidelines for the *Theory of Computing*

Alexander Russell*

John C. Milestone†

Kálmán Szőlőssy‡

László Szőlőssy§

Mária Szőlőssy

Nándor Szőlőssy

Orbán Szőlőssy

Received: October 15, 2004; published: December 31, 2004.

Abstract: This document describes L^AT_EX typesetting guidelines for the *Theory of Computing*, including the use of the `toc.cls` class file.

ACM Classification: None

AMS Classification: None

Key words and phrases: Theory of Computing, Guidelines

1 Introduction

This document describes typesetting guidelines for the *Theory of Computing*. Articles for *Theory of Computing* are to be typeset in L^AT_EX, using the `toc.cls` class file. The most recent version of the class file (and this explanatory document) may be found at

<http://theoryofcomputing.org> .

*Supported by GGA Grant # 142857.

†Fictitious name to demonstrate format.

‡Another fictitious name.

§Another member of a large fictitious family to illustrate what happens when a paper has many authors.

Authors retain copyright to their papers and grant “Theory of Computing” unlimited rights to publish the paper electronically and in hard copy. Use of the article is permitted as long as the author(s) and the journal are properly acknowledged. For the detailed copyright statement, see <http://theoryofcomputing.org/copyright.html>.

The `toc.cls` class file requires $\text{\LaTeX}2e$ and the AMS- \LaTeX packages `amsmath`, `amssymb` and `amsthm` (all of which are included in the AMS- \LaTeX distribution). The AMS- \LaTeX distribution is a part of many \LaTeX distributions (e.g., \TeX , $\text{MiK}\text{\TeX}$, &c.) and is freely available from the American Mathematical Society at

<http://www.ams.org/tex/amslatex.html> .

In addition, the `toc.cls` file requires the following packages, all of which are available from the comprehensive \TeX archive network (<http://www.ctan.org/>): `color`, `eucal`, `refcount`, `lastpage` and `hyperref`. Most \LaTeX installations will have these package installed by default.

As a general rule, please minimize use fancy \LaTeX code or inclusion of esoteric packages.

2 Preamble, title, and author data

Your file should begin with

```
\documentclass{toc}
```

Following this, invoke the commands `\runningauthor` and `\runningtitle` to set the running author and title information for the headers, as below:

```
\runningauthor{First Author, Second Author, Third Author}
\runningtitle{Typesetting Guidelines for ToC}
```

Then use the `\copyrightauthor` command to set the copyright string in the footer of the title page. For example

```
\copyrightauthor{First Author, Second Author, Third Author}
```

Next, invoke the `\begin{document}` command followed by the `frontmatter` declaration, which defines author and title metadata for the article. For example,

```
\begin{document}
\begin{frontmatter}
\title{Typesetting Guidelines for the \textit{Theory of Computing}}
\toctitle{Typesetting Guidelines for the Theory of Computing}
\pdfauthor{First Author, Second Author, et. al.}

\author[first]{First Author\thanks{Supported by GGA Grant \# 142847.}}
\author[Second]{Second Author\thanks{Supported by XYZ Grant \# 271828.}}
\author[third]{Third Author}

\begin{abstract}
This article provides typesetting guidelines for the

```

A. RUSSELL, J. MILESTONE, K. SZŐLŐSSY, L. SZŐLŐSSY,
M. SZŐLŐSSY, N. SZŐLŐSSY, O. SZŐLŐSSY

```
\textsl{Theory of Computing} Journal.  
\end{abstract}  
  
\tockeyswords{Guidelines, toc.cls, typesetting}  
\tocams{Does not fall under AMS Classification}  
\tocacm{Does not fall under ACM Classification}  
  
\end{frontmatter}  
...
```

Inside the `frontmatter` environment, use the `\tocpdftitle` and `\tocpdfauthor` commands to setup the title and author metadata information for the PDF file. *Note that arguments to these should not use LaTeX constructs.* The title, author(s), abstract, keywords and other metadata associated with your article are assigned as above. One `\author` command should appear for each author. Footnotes on author names may be obtained by the `\thanks` command, as above.

Refrain from using long footnotes inside `\thanks`. Use the `tocauthors` and `tocaboutauthors` environments instead. The optional argument below is used to associate the author's name with the author's institution, email addresses and other information. This additional information is provided using the `tocauthors` and `tocaboutauthors` environments as shown below. These environments should be placed after the bibliography.

```
...  
\begin{document}  
\begin{frontmatter}  
...  
\end{frontmatter}  
% The article comes here  
...  
\bibliography{example}  
\bibliographystyle{tocplain}  
  
\begin{tocauthors}  
\begin{tocinfo}[first]  
First Author \tocabout{}\\  
First Institution \\  
myemail\toeat{}mydept\tocdot{}myuniv\tocdot{}edu  
\end{tocinfo}  
\begin{tocinfo}[third]  
Third Author \\  
Third Institution \\  
anotheremail\toeat{}anotherdept\tocdot{}anotheruniv\tocdot{}edu  
\end{tocinfo}  
\end{tocauthors}
```

```

\begin{tocaboutauthors}
  \begin{tocabout}[first]
First Author, did his Ph.D. from University of \Pi.
His advisor was \href{http://someplace.somewhere.net}{nobody}.
He is interested in Communication Complexity and Game Theory.
His hobbies include Skiing and Fishing.
  \end{tocabout}
\end{tocaboutauthors}
\end{document}

```

The `\tocabout` macro in the `tocinfo` environment creates a link to the “About the Author” information specified in the `\tocaboutauthors` environment.

3 General typesetting requests

Use the `\section` command to break your exposition into natural sections. For example

```
\section{General typesetting requests}
```

was the command used to typeset the beginning of this section.

Please use `\emph` rather than `\em` to *emphasize* text, as `\emph` is smart about space following the emphasized text. Similarly, use the `LATEX2e` commands `\texttt`, `\textsl`, `\textit`, `\textsf`, and `\textbf`, to produce *teletype*, *slanted*, *italic*, *sans-serif*, and **bold** text. In math mode, please use the math mode commands `\mathrm` and `\mathbf` commands to produce Roman and **boldface** characters. *CALLIGRAPHIC* characters are produced by the `\mathcal` command (in math mode only). Use `\mathbb{N}`, `\mathbb{Z}`, `\mathbb{Q}`, `\mathbb{R}`, and `\mathbb{C}` to produce the symbols for the five common number systems; they will be typeset in blackboard-bold as \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Use the `\mathbb` command to create other blackboard-bold characters in math mode; for instance `\mathbb{H}` will produce \mathbb{H} , the standard symbol for the quaternions.

4 Figures and included images

If you wish to include images in your article, please use the `\includegraphics` command in the `graphicx` package. Add

```
\usepackage{graphicx}
```

in the preamble, after the `\documentclass{toc}` command. Usage of `epic` and `eepic` are also encouraged, in general, for generating figures. Included images should always appear within a `figure` environment:

```

\begin{figure}
\begin{center}

```

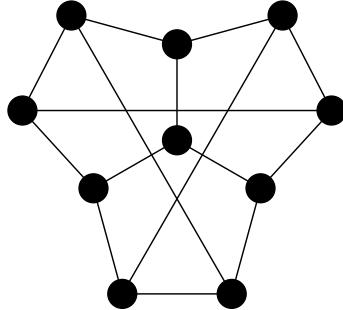


Figure 1: Petersen's graph: an included image.

```
\includegraphics[scale=0.6]{petersen}
\end{center}
\caption{Petersen's graph: an included image.}
\end{figure}
```

As *Theory of Computing* publishes articles using Adobe's acrobat format, we ask that you provide versions of your included figures in this format. Figures in encapsulated postscript format can be used to generate acrobat figures by the `epstopdf` program, also available in the comprehensive `TEX` archive network at

<http://www.ctan.org/tex-archive/support/epstopdf/> .

If you are having BoundingBox issues you may find the `epstool` program useful. This program can be found at

<http://www.cs.wisc.edu/~ghost/gsview/epstool.htm>

Remark. The `\includegraphics` command adapts its behavior depending on whether your `LATEX` file is compiled with `latex` or `pdflatex`; so long as you do not have an extension on the filename in the `\includegraphics` command (as above), it will attempt to load the file with a `.pdf` extension when called from `pdflatex` and a `.eps` extension when called from `latex`.

5 Mathematical formulæ and proofs

The AMS theorem class is loaded by default, which means that theorems, definitions, etc. are coded as follows:

Theorem 5.1 (Markov's inequality). *Let X be a positive real-valued random variable. Then, for every positive α ,*

$$\Pr[X \geq \alpha] \leq \frac{E[X]}{\alpha} . \quad (5.1)$$

Constructs for propositions, corollaries, claims, and lemmas are predefined, invoked as above, and share numbering with theorems. For example:

Proposition 5.2 (Chebyshev's inequality). *Let X be a real-valued random variable. Then, for every positive λ ,*

$$\Pr[|X - E[X]| \geq \lambda] \leq \frac{\sigma^2[X]}{\lambda^2}.$$

Similar environments for definitions, conjectures, examples, remarks, and facts are also defined. They are typeset slightly differently but do share numbering with the constructs above. For example

Definition 5.3. Let X be a real-valued random variable for which $E[X^2] < \infty$. The *standard deviation* of X , denoted $\sigma[X]$, is given by

$$\sigma[X] = \sqrt{E[(X - E[X])^2]}.$$

If you wish to define a new theorem-like environment (`idea`, for example), you must inform `LATEX` about the environment in the preamble of your document (that is, between the `\documentclass{toc}` command and the `\begin{document}` command). If you wish to define the environment so that it is typeset like a Theorem (text in Italics), use the sequence of commands:

```
\theoremstyle{plain}
\newtheorem{idea}{theorem}{Idea}
```

If you wish to define an environment so that it is typeset like a Definition (text in Roman), use the sequence of commands:

```
\theoremstyle{definition}
\newtheorem{thought}{theorem}{Thought}
```

Proceed to use the construct in the body of your article as follows:

```
\begin{idea}
  Use binary-coded-decimal instead of the long code.
\end{idea}
```

This will produce the output:

Idea 5.4. *Use binary-coded-decimal instead of the long code.*

With the `thought` environment, the code will be this:

```
\begin{thought}
  Use binary-coded-decimal instead of the long code.
\end{thought}
```

This will produce the output:

Thought 5.5. Use binary-coded-decimal instead of the long code.

Proofs simply use the `proof` environment:

Proof of Markov's inequality. To prove inequality (5.1), expand the definition of $E[X]$. □

Equations. Unnumbered equations, like the one appearing in [Proposition 5.2](#) above, are produced by the `$$` (or `\[` and `\]`) delimiters: for example,

```
$$
\sigma^2[X] = E\Bigl[\bigl(X - E[X]\bigr)^2\Bigr]\enspace.
$$
```

produces the equation

$$\sigma^2[X] = E\left[(X - E[X])^2\right] .$$

Please use `\enspace`, as above, to provide enough space between equations and any following punctuation. Note how the size of delimiters such as `|` and `[` can be changed in an equation by use of the modifiers `\bigl` and `\Bigl`. To have [L^AT_EX](#) automatically adjust the size of such delimiters, use `\left` and `\right`, as in Equation [\(5.2\)](#) below.

Numbered equation are produced using the standard equation environment. For example, the [L^AT_EX](#) code

```
\begin{equation}
\label{eq:covariance}
\text{cov}[X,Y] = E\left[\bigl(X - E[X]\bigr)\bigl(Y - E[Y]\bigr)\right]\enspace.
\end{equation}
```

produces the equation

$$\text{Cov}[X,Y] = E\left[(X - E[X])(Y - E[Y])\right] . \tag{5.2}$$

Observe that equations numbers have the form `(s.n)`, where *s* is a section number and *n* is a subordinate equation number. To refer to an equation from the main text body, use the `\eqref` command with the label attached to the equation by the `\label` command. For example, the reference Equation [\(5.2\)](#) is produced by the [L^AT_EX](#) code `Equation^{\eqref{eq:covariance}}`.

6 Labels and References

Labels are attached to theorems and such using the command `\label{labelname}` and usually referred to by using `\ref{labelname}`. Though not required by [L^AT_EX](#) it is advisable that the label names, follow a prefix convention that can be used to identify the type of label. For example, labels attaches to Theorems should be prefixed by `thm:`. This makes copy editing the [L^AT_EX](#) file easier.

In order to simplify phrases like `Lemma^{\ref{lem:labelname}}`, `toc.cls` provides a number of `\ref`-like environments. For example, to refer to the lemma labelled `lem:labelname`, you can use `\lemref{lem:labelname}`. This will generate the word `Lemma` as well as make it easier for the reader to navigate through your document (clicking on `Lemma` will take the reader to the referred lemma). The predefined list of `\ref`-variants include¹:

¹See source file for other variants

lemref	(Lemma)	thmref	(Theorem)
propref	(Proposition)	corref	(Corrolary)
secref	(Section)	subsecref	(Subsection)
exerref	(Exercise)	factref	(Fact)
defnref	(Definition)	egref	(Example)
remref	(Remark)		

7 Bibliography

All the Bibliography entries should be formatted according to toc guidelines. These guidelines are implemented via the BibTeX style file `tocplain bst`, which can be downloaded from the journal website. Hence authors are encouraged to use BibTeX databases for the bibliographies as opposed to using the `thebibliography` environment directly in the LaTeX source. Authors are also encouraged to use the "url,ps, pdf" fields in the BibTeX entry to indicate an internet URL where the full text of the cited material is available. Preference should be given to URLs without access restrictions. When specifying a URL ensure that it starts with `http://`.

References

- [1] * S. AARONSON: Limitations of quantum advice and one-way communication. *Theory of Computing*, 1(1):1–28, 2005. [[ToC:v001/a001](#), [arXiv:quant-ph/432432](#)].
- [2] * N. ALON AND J. SPENCER: *The Probabilistic Method*. Wiley-Interscience, 1992.
- [3] * F. ARNOLD: Personal Communication, Feb 1992.
- [4] * L. BABAI, G. HETYEI, W.M. KANTOR, A. LUBOTSKY, AND Á. SERESS: On the diameter of finite groups. *31st IEEE FOCS*, pp. 857–865, 1990.
- [5] * H. CHERNOFF: A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations. *Annals of Mathematical Statistics*, 23:493–509, 1952.
- [6] * L. LAMPORT: *LaTeX User Guide and Reference*. Assison-Wesley, 1985.
- [7] * NOBODY: A fictitious entry for a arxiv article. Invalid number for arxiv. [[arXiv:quant-ph/1234567](#)].
- [8] * NOBODY: A fictitious entry for a arxiv article. Invalid number for arxiv. [[arXiv:quant-ph/1234567](#)].
- [9] * NOBODY: A fictitious entry for an eccc article. Invalid TR number for ECC. [[ECCC:TR93-001](#)].

A. RUSSELL, J. MILESTONE, K. SZŐLŐSSY, L. SZŐLŐSSY,
M. SZŐLŐSSY, N. SZŐLŐSSY, O. SZŐLŐSSY

AUTHORS

Alexander Russell [\[About the author\]](#)
associate professor
University of Connecticut, Storrs, CT
acr@cse.uconn.edu
<http://www.engr.uconn.edu/~acr>

John C. Milestone [\[About the author\]](#)
lecturer
University of Chicago, Chicago, IL
milestone@cs.uchicago.edu
<http://people.cs.uchicago.edu/~milestone>

Kálmán Szőlőssy
senior research associate
TOC Hungary Inc., Kecskemét, Hungary
kszolos@ailab.toc.hu
<http://www.toc.hu/~kalman>

László Szőlőssy
junior research associate²
TOC Hungary Inc., Kecskemét, Hungary
lszolos@ailab.toc.hu
<http://www.toc.hu/~laci>

Mária Szőlőssy
graduate student
University of Connecticut, Storrs, CT
mszolos@cse.uconn.edu
<http://www.engr.uconn.edu/~mariads>

²At the time of submission, this author was a graduate student at the University of Connecticut, Storrs, CT.

TYPESETTING GUIDELINES

Nándor Szőlőssy
toddler³
Storrs South Day Care, Storrs, CT
mszolos@cse.uconn.edu
<http://www.toc.hu/~laci>

Orbán Szőlőssy
consultant
Orban Consulting
Palo Alto, CA
orban@orban.com
<http://orban.com>

ABOUT THE AUTHORS

ALEX RUSSELL graduated from M.I.T. in 1996. His advisor was Mike Sipser. His CS interests include distributed computing, quantum computation, interactive proofs, cryptography, information theory, and group theory. He also enjoys cycling, raising his two kids, and editing the Theory of Computing.

JOHN C. MILESTONE has Masters Degree in accounting from Wabash College, Granville, IL and is currently considering graduate study in computer science. He also enjoys watching the Chicago skyline.⁴

No information is available about the SZŐLŐSSYS except that Orbán was born in Buenos Aires and is no relation to his namesakes.

³Infant at the time of submission.

⁴This footnote to test width problems which might happen