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1 Introduction

Many networks, including the Internet, are developed, built, and maintained by a large number of agents
(Autonomous Systems), all of whom act selfishly and have relatively limited goals. This naturally sug-
gests a game-theoretic approach for studying both the behavior of these independent agents and the
structure of the networks they generate. The stable outcomes of the interactions of non-cooperative self-
ish agents correspond to Nash equilibria. Typically, considering the Nash equilibria of games modeling
classical networking problems gives rise to a number of new issues. In particular, Nash equilibria in net-
work games can be much more expensive than the best centralized design. Papadimitriou [26] uses the
termprice of anarchyto refer to this increase in cost caused by selfish behavior. The price of anarchy
has been studied in a number of games dealing with various networking issues, such as load balanc-
ing [11, 12, 25, 29], routing [30, 31, 32], facility location [34], and flow control [2, 13, 33]. In some
cases [30, 31] the Nash equilibrium is unique, while in others [25] the best Nash equilibrium coincides
with the optimum solution and the authors study the quality of the worst equilibrium. However, in some
games the quality of even the best possible equilibria can be far from optimal (e. g. in the prisoner’s
dilemma). The best Nash equilibrium can be viewed as the best solution that selfish agents can agree
upon, i. e. once the solution is agreed upon, the agents do not find it in their interest to deviate. While the
price of anarchy is a measure of howbadan equilibrium can be, we study the complementary question
of howgoodan equilibrium can be in the context of a network design game. Schultz and Stier [32] study
the ratio of the best equilibrium to the optimum, in the context of a capacitated routing game. We call
this ratio theprice of stability, a term introduced in [4].1

In this paper we consider a simple network design game where every agent has a specific connectivity
requirement, i. e. each agent has a set of terminals and wants to build a network in which his terminals
are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as
possible. This game can be viewed as a simple model of network creation. Alternatively, by studying
the best Nash equilibria, our game provides a framework for understanding those networks that a central
authority could persuade selfish agents to purchase and maintain, by specifying to which parts of the
network each agent contributes. An interesting feature of our game is that selfish agents will find it in
their individual interests tosharethe costs of edges, and so effectively cooperate.

More precisely, we study the following network game forN players, which we call theconnection
game. For each game instance, we are given a graphG with non-negative edge costs. Except when
specified otherwise, we will assume thatG is undirected. Players form a network by purchasing some
subgraph ofG. Each player has a set of specified terminal nodes that he would like to see connected in
the purchased network. With this as their goal, players offer payments indicating how much they will
contribute towards the purchase of each edge inG. If the players’ payments for a particular edgee sum
to at least the cost ofe, then the edge is consideredbought, which means thate is added to our network
and can now be used by any player. Each player would like to minimize his total payments, but insists
on connecting all of his terminals. We allow the cost of any edge to be shared by multiple players. Fur-
thermore, once an edge is purchased, any player can use it to satisfy his connectivity requirement, even
if that player contributed nothing to the cost of this edge. Finding the centralized optimum of the con-
nection game, i. e. the network of bought edges which minimizes the sum of the players’ contributions,

1In the conference version of our paper we used the termoptimistic price of anarchyinstead.
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is the classic network design problem of the generalized Steiner tree [1, 19]. We are most interested in
deterministic Nash equilibria of the connection game, and in the price of stability, as the price of anarchy
in our game can be quite bad. In a game theoretic context it might seem natural to also considermixed
Nash equilibria when agents can randomly choose between different strategies. However, since we are
modeling the construction of large-scale networks, randomizing over strategies is not a realistic option
for players.

Our results We study deterministic Nash equilibria of the connection game, and prove bounds on the
price of stability. We also explore the notion of anapproximate equilibrium, and study the question of
how far from a true equilibrium one has to get to be able to use the optimum solution, i. e. how unhappy
would the agents have to be if they were forced to pay for the socially optimal design. We view this as a
two parameter optimization problem: we would like to have a solution with cost close to the minimum
possible cost, and where users would not have large incentives to deviate. Finally, we examine how
difficult it is to find equilibria at all.

Our results include the following.

• In Section3 we consider the special case when the goal of each player is to connect a single termi-
nal to a common source. We prove that in this case, there is a Nash equilibrium, the cost of which
is equal to the cost of the optimal network. In other words, with a single source and one terminal
per player, the price of stability is 1. Furthermore, given anε > 0 and anα-approximate solution
to the optimal network, we show how to construct in polynomial time a(1+ε)-approximate Nash
equilibrium (players only benefit by a factor of(1+ ε) in deviating) whose total cost is within a
factor ofα to the optimal network.

We generalize these results in two ways. First, we can extend the results to the case when the
graph is directed and players seek to establish a directed path from their terminal to the common
source. Note that problems in directed graphs are often significantly more complicated than their
undirected counterparts [8, 16]. Second, players do not have to insist on connecting their terminals
at all cost, but rather each playeri may have a maximum cost max(i) that he is willing to pay, and
would rather stay unconnected if his cost exceeds max(i).

• In Section4 we consider the general case, when players may want to connect more than 2 termi-
nals, and they do not necessarily share a single source node. In this case, there may not exist a
deterministic Nash equilibrium. When deterministic Nash equilibria do exist, the costs of different
equilibria may differ by as much as a factor ofN, the number of players, and even the price of
stability may be nearlyN. However, inSection4 we prove that there is always a 3-approximate
equilibrium that pays for the optimal network. Furthermore, we show how to construct in poly-
nomial time a(4.65+ ε)-approximate Nash equilibrium whose total cost is within a factor of 2 to
the optimal network.

• Finally, in Section5 we show that determining whether or not a Nash equilibrium exists is NP-
complete when the number of players is part of the input. In addition, we give a lower bound on
the approximability of a Nash equilibrium on the centralized optimum in our game.
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Related work We view our game as a simple model of how different service providers build and main-
tain the Internet topology, or how companies with different interests build transportation networks. We
use a game theoretic version of network design problems considered in approximation algorithms [19].
Fabrikant et al. [15] study a different network creation game. Network games similar to that of [15] have
also been studied for modeling the creation and maintenance of social networks [7, 20]. In the network
game considered in [7, 15, 20, 3] each agent corresponds to a single node of the network, and agents can
only buy edges adjacent to their nodes. This model of network creation seems extremely well suited for
modeling the creation of social networks. However, in the context of communication networks like the
Internet, as well as in transportation networks, agents are not directly associated with individual nodes,
and can build or be responsible for more complex networks. There are many situations where agents
will find it in their interest tosharethe costs of certain expensive edges. An interesting feature of our
model which does not appear in [7, 15, 20] is that we allow agents to share costs in this manner. To keep
our model simple, we assume that each agent’s goal is to keep his terminals connected, and agents are
not sensitive to the length of the connecting path.

Since the conference version of this paper [5], there have been several new papers about the con-
nection game, e. g., [14, 22, 21, 23, 11, 6]. Probably the most relevant such model to our research is
presented in [4] (and further addressed in [9, 10, 18]). In [4], extra restrictions of “fair sharing” are
added to the Connection Game, making it a congestion game [28] and thereby guaranteeing some nice
properties, like the existence of Nash equilibria even with multiple terminals per player, and a bounded
price of stability. While the connection game is not a congestion game, and is not guaranteed to have a
Nash equilibrium, it actually behaves much better than [4] when all the agents are trying to connect to
a single common node. Specifically, the price of stability in that case is 1, while the model in [4] has a
price stability ofΘ(logn) when edges are directed. Moreover, all such models (including cost-sharing
models described below) restrict the interactions of the agents to improve the quality of the outcomes,
by forcing them to share the costs of edges in a particular way. This does not address the contexts when
we are not allowed to place such restrictions on the agents, as would be the case when the agents are
building the network together without some overseeing authority. However, as we show in this paper, is
still possible to nudge the agents into an extremely good outcome without restricting their behavior in
any way.

Jain and Vazirani [24] study a different cost-sharing game related to Steiner trees. They assume
that each playeri has a utilityui for belonging to the Steiner tree, and thatui is a private value. Their
goal is to give a truthful mechanism to build a Steiner tree, and decide on cost-shares for each agent
(where the cost charged to an agent may not exceed his utility). They design a mechanism where truth-
telling is a dominant strategy for the agents, i. e. selfish agents do not find it in their interest to misreport
their utility (in hopes of being included in the Steiner tree for smaller costs). Jain and Vazirani give
a truthful mechanism to share the cost of the minimum spanning tree, which is a 2-approximation for
the Steiner tree problem. This game has some similarities with our single source network creation game
considered inSection3. We can view the maximum payment max(i) of agenti as his utilityui . However,
our game has no central authority designing the Steiner tree or cost shares. Instead, ours is a game of
full information, and we focus primarily on evaluating the Nash equilibria. Also, in our game, agents
must offer payments for each edge of the tree (modeling the cooperation of selfish agents), while in a
mechanism design framework, agents pay the mechanism for the service, and do not care what edge
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they contribute to.
Finally, [5] is the conference version of this paper. It differs in several respects, most notably in the

proofs ofSection4.

2 Model and basic results

The connection game We now formally define the connection game forN players. Let an undirected
graphG = (V,E) be given, with each edgee having a nonnegative costc(e). Each playeri has a set of
terminal nodes that he must connect. The terminals of different players do not have to be distinct. A
strategy of a player is a payment functionpi , wherepi(e) is how much playeri is offering to contribute
to the cost of edgee. Any edgee such that∑i pi(e) ≥ c(e) is consideredbought, andGp denotes the
graph of bought edges with the players offering paymentsp= (p1, . . . , pN). Any player whose terminals
are not all connected inGp incurs an infinite penalty. Otherwise, a player simply pays the sum of his
edge contributions,∑e∈E pi(e), and seeks to minimize this total payment.

A Nash equilibrium of the connection game is a payment functionp such that, if players offer
paymentsp, no player has an incentive to deviate from his payments. This is equivalent to saying that
if p j for all j 6= i are fixed, thenpi minimizes the payments of playeri. A (1+ ε)-approximate Nash
equilibrium is a functionp such that no playeri could decrease his payments by more than a factor of
1+ ε by deviating, i. e. by using a different payment functionpi

′.

Some properties of Nash equilibria Here we present several useful properties of Nash equilibria in
the Connection Game. Suppose we have a Nash equilibriump. Then it follows from the definitions that
(1) Gp is a forest. Furthermore, if we letT i be the smallest tree inGp connecting all terminals of player
i, then (2) each playeri only contributes to costs of edges onT i . Finally, (3) each edge is either paid for
fully or not at all.

Property 1 holds because if there was a cycle inGp, any playeri paying for any edge of the cycle
could stop paying for that edge and decrease his payments while his terminals would still remain con-
nected in the new graph of bought edges. Similarly, Property 2 holds since if playeri contributed to an
edgee which is not inT i , then he could take away his payment fore and decrease his total costs while
all his terminals would still remain connected. Property 3 is true because ifi was paying something for
e such that∑i pi(e) > ce or ce > ∑i pi(e) > 0, theni could take away part of his payment fore and not
change the graph of bought edges at all.

Nash equilibria may not exist It is not always the case that selfish agents can agree to pay for a
network. There are instances of the connection game which have no pure Nash equilibria (equilibria
in which players do not randomize over strategies). InFigure 1, there are 2 players, one wishing to
connect nodes1 to nodet1, and the others2 to t2. Now suppose that there exists a Nash equilibriump.
By Property 1 above, in a Nash equilibriumGp must be a forest, so assume without loss of generality it
consists of the edgesa, b, andc. By Property 2, player 1 only contributes to edgesa andb, and player 2
only contributes to edgesb andc. This means that edgesa andc must be bought fully by players 1 and
2, respectively. At least one of the two players must contribute a positive amount to edgeb. However,
neither player can do that in a Nash equilibrium, since then he would have an incentive to switch to the
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Figure 1: A game with no Nash equilibria.
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Figure 2: A game with only fractional Nash equilibria.

strategy of only buying edged and nothing else, which would connect his terminals with the player’s
total payments being only 1. Therefore, no Nash equilibria exist in this example.

Fractional Nash equilibria When looking at the connection game, we might be tempted to assume
that giving players the opportunity to share costs of edges is an unnecessary complication. However,
sometimes players must share costs of edges for all players to agree on a network. There are game
instances where the only Nash equilibria in existence require that players split the cost of an edge. We
will call such Nash equilibriafractional and we will call Nash equilibria that do not involve players
sharing costs of edgesnon-fractional.

In Figure 2(a) we have an example of a connection game instance where the only Nash equilibria
are fractional ones. Once again, player 1 would like to connects1 andt1, and player 2 would like to
connects2 andt2. First, note that there is a fractional Nash equilibrium, as shown inFigure 2(b), with
the contribution of player 1 (2) indicated with a thick black (gray) line. Here player 2 contributes 5 to
edgee and player 1 contributes 1 toe and 3 to both ofa andc. It is easy to confirm that neither player
has an incentive to deviate.

Now we must show that there are no non-fractional Nash equilibria in this example. Observe that
if edgee is not bought, then we have a graph which is effectively equivalent to the graph in which we
showed there to be no Nash equilibria at all. Therefore any non-fractional Nash equilibria must buy
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N1

s1,...,sN

t1,...,tN

Figure 3: A game with price of anarchy ofN.

edgee. Given that edgee must be bought, it is clear that player 2 will only contribute to edgee. For a
Nash equilibriump to be non-fractional, this would mean that player 2 either buys edgee fully or buys
nothing at all. Suppose player 2 buyse. The only response for which player 1 would not want to deviate
would be to buya andc. But then player 2 has an incentive to switch to either edgeb or d. Now suppose
player 2 does not buye. Then the only response for which player 1 would not want to deviate would be
to either buya andb or buyc andd. Either way, player 2 does not succeed in joining his source to his
sink, and thus has an incentive to buy an edge. Hence, there are no non-fractional Nash equilibria in this
graph.

The price of anarchy We have now shown that Nash equilibria do not have to exist. However, when
they exist, how bad can these Nash equilibria be? As mentioned above, the price of anarchy refers to the
ratio of the costs of the worst (most expensive) Nash equilibrium and the optimal centralized solution. In
the connection game, the price of anarchy is at mostN, the number of players. This is simply because if
the worst Nash equilibriump costs more thanN times OPT, the cost of the optimal solution, then there
must be a player whose payments inp are strictly more than OPT, so he could deviate by purchasing
the entire optimal solution by himself, and connect his terminals with smaller payments than before.
More importantly, there are cases when the price of anarchy actually equalsN, so the above bound is
tight. This is demonstrated with the example inFigure 3. Suppose there areN players, andG consists of
nodessandt which are joined by 2 disjoint paths, one of length 1 and and one of lengthN. Each player
has a terminal ats andt. Then, the worst Nash equilibrium has each player contributing 1 to the long
path, and has a cost ofN. The optimal solution here has a cost of only 1, so the price of anarchy isN.
Therefore, the price of anarchy could be very high in the connection game. However, notice that in this
example thebestNash equilibrium (which is each player buying 1/N of the short path) has the same
cost as the optimal centralized solution. We have now shown that the price of anarchy can be very large
in the connection game, but the price of stability remains worth considering, since the above example
shows that it can differ from the (conventional) price of anarchy by as much as a factor ofN.
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Figure 4: A single source game in which best response dynamics do not converge.

All the results in this section also hold ifG is directed or if each playeri has a maximum cost max(i)
beyond which he would rather pay nothing and not connect his terminals.

3 Single source games

As we show inSection5, determining whether or not Nash equilibria exist in a general instance of the
connection game is NP-hard. Furthermore, even when equilibria exist, they may be significantly more
expensive than the centrally optimal network. In this section we define a class of games in which there
is always a Nash equilibrium, and the price of stability is 1. Furthermore, we show how we can use an
approximation to the centrally optimal network to construct a(1+ ε)-approximate Nash equilibrium in
poly-time, for anyε > 0.

Definition 3.1. A single source gameis a game in which all players share a common terminals, and in
addition, each playeri has exactly one other terminalti .

Before presenting our main result for this section, it is worth noting that even with single source
games, best response dynamics (the process in which players alternate making improving moves when
possible) does not necessarily converge to a pure Nash equilibrium at all. Three players all wish to
connect tos. Consider an initial configuration in which each player pays fully for the cost 4 direct path
from their terminal tos (although any non-fractional configuration will lead to the same conclusion). If
player 1 is allowed to move, he will take the shortcut to the middle of player 3’s path, paying 3 to do
so. Likewise, player 3 has an incentive to take a shortcut to the middle of player 2’s path. But doing so
leaves player 1 disconnected, and thus player 1 will revert to his direct connection. Since the resulting
configuration is simply a rotation of a previous configuration, it is not hard to see that this process will
never terminate.

We will now show that the price of stability is 1 in single source games. To do this, we must
argue that there is a Nash equilibrium that purchasesT∗, the minimum cost Steiner tree on the players’
terminal nodes. There are a number of standard cost-sharing methods for sharing the cost of a tree among
the terminals. The two most commonly studied methods are the Shapley value and the Marginal Cost
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mechanisms [17]. The Marginal Cost (or VCG) mechanisms are very far from being budget balanced,
i. e. the agents do not pay for even a constant fraction of the tree built. The Shapley value mechanism
is budget balanced: the cost of each edge is evenly shared by the terminals that use the edge for their
connection (i. e., the terminals in the subtree below the edgee). However, this method does not lead
to a Nash equilibrium in our game: some players can have cheaper alternative paths, and hence benefit
by deviating. Jain and Vazirani [24] give a truthful budget balanced cost-sharing mechanism to pay for
the minimum spanning tree, which is a 2-approximate budget balanced mechanism for the Steiner tree
problem. However, it is only a 2-approximation, and the cost-shares are not associated with edges that
the agents use. Here we will show that while the traditional Steiner tree cost-sharing methods do not
lead to a Nash equilibrium, such a solution can be obtained.

Theorem 3.2. In any single source game, there is a Nash equilibrium which purchases T∗, a minimum
cost Steiner tree on all players’ terminal nodes.

Proof. GivenT∗, we present an algorithm to construct payment strategiesp. We will view T∗ as being
rooted ats. Let Te be the subtree ofT∗ disconnected froms whene is removed. We will determine
payments to edges by considering edges in reverse breadth first search order. We determine payments to
the subtreeTe before we consider edgee. In selecting the payment of agenti to edgee we considerc′,
the cost that playeri faces if he deviates in the final solution: edgesf in the subtreeTe are considered to
costpi( f ), edgesf not in T∗ costc( f ), while all other edges cost 0. We never allowi to contribute so
much toe that his total payments exceed his cost of connectingti to s.

Algorithm 3.3. Initialize pi(e) = 0 for all players i and edges e.
Loop through all edges e in T∗ in reverse BFS order.

Loop through all players i with ti ∈ Te until e paid for.
If e is a cut in G set pi(e) = c(e).
Otherwise

Define c′( f ) = pi( f ) for all f ∈ T∗ and
c′( f ) = c( f ) for all f /∈ T∗.

Define χi to be the cost of the cheapest path from s to
ti in G\{e} under modified costs c′.

Define pi(T∗) = ∑ f∈T∗ pi( f ).
Define p(e) = ∑ j p j(e).
Set pi(e) = min{χi − pi(T∗),c(e)− p(e)}.

end
end

end

We first claim that if this algorithm terminates, the resulting payment forms a Nash equilibrium.
Consider the algorithm at some stage where we are determiningi’s payment toe. The cost function
c′ is defined to reflect the costs playeri faces if he deviates in the final solution. We never allowi to
contribute so much toe that his total payments exceed his cost of connectingti to s. Therefore it is never
in playeri’s interest to deviate. Since this is true for all players,p is a Nash equilibrium.

We will now prove that this algorithm succeeds in paying forT∗. In particular, we need to show
that for any edgee, the players with terminals inTe will be willing to pay for e. Assume the players
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Figure 5: Alternative paths in single source games.

are unwilling to buy an edgee. Then each player has some path which explains why it can’t contribute
more toe. We can use a carefully selected subset of these paths to modifyT∗, forming a cheaper tree
that spans all terminals and doesn’t containe. This would clearly contradict our assumption thatT∗ had
minimum cost.

Define playeri’s alternative path Ai to be the path of costχi found inAlgorithm 3.3, as shown in
Figure 5. If there is more than one such path, chooseAi to be the path which includes as many ancestors
of ti in Te as possible before including edges outside ofT∗. To show that all edges inT∗ are paid for, we
need the following technical lemma concerning the structure of alternative paths.

Lemma 3.4. Suppose Ai is i’s alternative path at some stage of the algorithm. Then there are two nodes
v and w on Ai , such that all edges on Ai from ti to v are in Te, all edges between v and w are in E\T∗,
and all edges between w and s are in T∗ \Te.

Proof. OnceAi reaches a nodew in T∗ \Te, all subsequent nodes ofAi will be in T∗ \Te, as all edgesf
in T∗ \Te have costc′( f ) = 0 and the sources is in T∗ \Te. Thus, supposeAi begins with a pathP1 in
Te, followed by a pathP2 containing only edges not inT∗, before reaching a nodex in Te, as shown in
Figure 6(a). Lety be the lowest common ancestor ofx andti in Te. DefineP3 to be the path fromti to y
in Te, and defineP4 to be the path fromy to x in Te. We will show that by replacingP1∪P2 with P3∪P4,
playeri would obtain a better deviation thanAi .

First, we prove thatP1 is strictly belowy. If this were not the case, thenP3 is a subpath ofP1, and
soc′(P3)≤ c′(P1). The modified cost ofP4 is always 0, as none of the edges inP4 are on playeri’s path
from ti to s in T∗. SinceP2 is disjoint fromT∗, its modified cost is just the actual cost of the pathP2,
i. e., c′(P2) = c(P2). This cost is strictly positive (if there were any 0-cost edge in the graph, we could
have simply contracted them before beginning our payment process). Therefore, the cost to agenti to
purchaseP1∪P2 is strictly greater than the cost to purchaseP3∪P4, and soAi cannot be a best deviation
path for agenti. Because of this contradiction, we may now assume thatP1 is strictly belowy.

We now show that under the modified cost functionc′, P3∪P4 is at least as cheap asP1∪P2. Since
P1∪P2 includes a higher ancestor ofti thanAi (namelyy), this contradicts our choice ofAi .
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Figure 6: Alternative path structure in the proof ofTheorem 3.2.

Consider the iterations of the algorithm during which playeri could have contributed to edges in
P3. At each of these steps the algorithm computes a cheapest path fromti to s. At any time, playeri’s
payments are upper bounded by the modified cost of his alternate path, which is in turn upper bounded
by the modified cost of any path fromti to s. In particular, playeri’s payments onP3 are upper bounded
by the modified cost of the pathP1∪P2, followed by a path inT∗ from x to s. The latter path fromx
to s has modified cost of 0, since we have not asked playeri to contribute to any edges abovey at this
point. Therefore,i’s contribution toP3 is always at most the modified cost ofP1∪P2. This implies that
c′(P3∪P4) = c′(P3)≤ c′(P1∪P2), as desired.

Thus, players’ alternative paths may initially use some edges inTe, but subsequently will exclusively
use edges outside ofTe. We use this fact in the following lemma.

Lemma 3.5. Algorithm 3.3fully pays for every edge in T∗.

Proof. Suppose that for some edgee, after all players have contributed toe, p(e) < c(e). That is, the
total payments currently being made by players inTe do not cover the cost of connecting these players
to T∗ \Te. We will demonstrate how to rewireTe so as to connect all players inTe to T∗ \Te without
increasing their payments, thus contradicting the minimality ofT∗.

For each playeri, call the highest ancestor ofti in Ai that is also inTe i’s deviation point, denoteddi .
Let D be the set containing thehighestdeviation points inTe.

We modifyT∗ by replacingTe as follows: those playersi whose alternative pathsAi are associated
with nodes inD deviate toAi , as shown inFigure 6(b). All other players leave their payments unchanged.
Note that no player has increased his expenditures. If we can show that all terminals inTe are connected
to T∗ \Te after this modification, we’re done.
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DefineTi to be the subtree rooted atdi . Consider any edgef in Ti . By Lemma 3.4, playeri is the
only deviating player who could have been contributing tof . If i did contribute tof , then f must be on
the unique path fromti to di in Te, and hencef is in Ai . ThusTi is fully paid for.

By Lemma 3.4, we know thatAi consists of edges inTi followed by edges inE \T∗ followed by
edges inT∗ \Te. The modified costc′ of edges inE \T∗ is their actual cost. Thusi pays fully for a path
connectingTi to T∗ \Te. Thus all terminals inTe are connected toT∗ \Te, as desired.

Since we have also shown that the algorithm always produces a Nash equilibrium, this concludes the
proof of the theorem.

We will now argue thatAlgorithm 3.3works even if the graph is directed. It is still the case that
if the algorithm does succeed in assigning payments to all edges, then we are done. Hence, to prove
correctness, we will again need only show that failure to pay for an edge implies the existence of a
cheaper tree, thus yielding a contradiction. The problem is thatLemma 3.4no longer holds; it is possible
that in a directed network, some of the players attempting to purchase an edgeehave an alternative path
which repeatedly moves in and out of the subtreeTe. Thus, the argument is more complex, and requires
a slightly different definition forD.

Lemma 3.6. Algorithm 3.3fully pays for every edge in T∗ for directed graphs.

Proof. Suppose the algorithm fails to pay for some edgee. At this point, every playeri with a terminal in
Te has an alternative pathAi , as defined earlier. DefineD to be the set of vertices contained in bothTe and
at least one alternative path. Note thatD contains all terminals that appear inTe. We now createD′ ⊆ D
by selecting thehighestelements ofD; we select the set of nodes fromD that do not have ancestors with
respect toTe in D. Every terminal inTe has a unique ancestor inD′ with respect toTe, and every node in
D′ can be associated with at least one alternative path.

For any nodev∈ D′, let Av be the alternative path containingv. If more than one such path exists,
simply select one of them. DefineA′

v to be the portion of this path fromv to the first node inT \Te. Note
thatA′

v does not re-enter the subtree rooted atv, since if it did, we could find a shorter alternative path
by shortcutting the distance between whereA′

v entered and left that subtree.
We can now formT ′ as the union of edges fromT \Te, all pathsA′

v, and every subtree ofTe rooted
at a node inD′. T ′ might not be a tree, but breaking any cycles yields a tree which is only cheaper.

It is clear that all terminals are connected to the root inT ′, since every terminal inTe is connected to
some node inD′, which in turn is connected toT \Te. Now we just need to prove that the cost of our new
tree is less than the cost of the original. To do so, we will show that the total cost of the subtrees below
nodes inD′, together with the cost of adding any additional edges needed by the pathsA′

v, is no greater
than the total payments assigned by the algorithm to the players inTe thus far. Hence it will be helpful
if we continue to view the new tree as being paid for by the players. In particular, we will assume that
all players maintain their original payments for all edges below nodes inD′, and the additional cost of
building any pathA′

v is covered by the player for whichAv was an alternative path. It now suffices to
show that no player increases their payment.

For the case of those players who are not associated with a node fromD′, this trivially holds, since
their new payments are just a subset of their original payments. Now consider a playeri who must pay
for any unbought edges in the pathA′

v, which starts from nodev∈D′. Note that playeri’s terminal might
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Figure 7: Alternative path structure in the proof ofLemma 3.6.

not be contained within the subtree rooted atv. If it is, then we are done, since in this case, playeri’s
new cost is at most the cost ofAv, which is exactlyi’s current payment.

Thus suppose instead that playeri’s terminal lies in a subtree rooted at a different nodev′ 6= v∈ D′

(this case is shown inFigure 7). Defineu to be the least common ancestor ofv andv′ in Te. Observe
thatu can not be eitherv or v′, as this would contradict the minimality of the setD′. DefineP1 to be the
current payments made by playeri from its terminal tou, and letP2 be the current payments made by
playeri from u to e (inclusive). DefineP3 as the cost ofAv \A′

v and letP4 be the cost ofA′
v. Note that

all costs are with respect toc′ as defined in the algorithm, and as such, depend on both playeri’s current
payments, and those of the other players. By the definition of alternative path,

P1 +P2 = P3 +P4 .

Furthermore, since we have already successfully paid for a connection tou, we know thatP3 ≥ P1, since
otherwise, when we were paying for the edges betweenv andu, playeri would have had an incentive
to deviate by purchasingP3 and then using the path fromv to u in Te, which would have been free fori.
HenceP4 ≤ P2.

Therefore we can bound playeri’s contribution to edges belowD′ by P1 (sinceu lies abovev′), and
we can bound playeri’s contribution toA′

v by P2. Taken together, we have that playeri’s new cost has not
increased. Thus inT ′, no player has increased his payment, all terminals inTe are connected toT \Te,
and these edges are fully paid for. Since those same terminals did not fully pay forTe∪{e} originally,
T ′ must be cheaper thanT, but this is a contradiction.

We have shown that the price of stability in a single source game is 1. However, the algorithm for
finding an optimal Nash equilibrium requires us to have a minimum cost Steiner tree on hand. Since this
is often computationally infeasible, we present the following result.

Theorem 3.7. Suppose we have a single source game and anα-approximate minimum cost Steiner
tree T . Then for anyε > 0, there is a poly-time algorithm which returns a(1+ ε)-approximate Nash
equilibrium on a Steiner tree T′, where c(T ′)≤ c(T).
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Proof. To find a(1+ ε)-approximate Nash equilibrium, we start by definingγ = εc(T)/((1+ ε)nα).
We now useAlgorithm 3.3to attempt to pay for all butγ of each edge inT. SinceT is not optimal, it is
possible that even with theγ reduction in price, there will be some edgee that the players are unwilling
to pay for. If this happens, the proof ofTheorem 3.2indicates how we can rearrangeT to decrease its
cost. If we modifyT in this manner, it is easy to show that we have decreased its cost by at leastγ. At
this point we simply start over with the new tree and attempt to pay for that.

Each call toAlgorithm 3.3 can be made to run in polynomial time. Furthermore, since each call
which fails to pay for the tree decreases the cost of the tree byγ, we can have at most(1+ ε)αn/ε calls.
Therefore in time polynomial inn, α anε−1, we have formed a treeT ′ with c(T ′)≤ c(T) such that the
players are willing to buyT ′ if the edges inT ′ have their costs decreased byγ.

For each playeri and for each edgee in T ′, we now create a new paymentp′i(e) by increasingpi(e)
in proportion to playeri’s total payments overT ′ such thate is fully paid for. In particular,

p′i(e) = pi(e)+ γ
pi(T ′)

∑ j p j(T ′)
.

Notice that players will now be paying for edges which they might not even use. Underp′, T ′ is clearly
paid for. To see that this is a(1+ ε)-approximate Nash equilibrium, note that playeri did not want to
deviate before his payments were increased. If we letm′ be the number of edges inT ′, theni’s payments
were increased by

p′i(T
′)− pi(T ′) = γ

pi(T ′)
c(T ′)−m′γ

m′ =
εc(T)pi(T ′)m′

(1+ ε)nα(c(T ′)−m′γ)
≤ εc(T)pi(T ′)

α(1+ ε)(1− ε)c(T ′)
≤ ε pi(T ′) .

Thus any deviation yields at most anε factor improvement.

Extensions Both Theorem 3.2and Theorem 3.7can be proven for the case where our graphG is
directed, and players wish to purchase paths fromti to s, although unfortauntely, the best-known approx-
imation algorithms for the directed problem is quite weak. Once we have shown that our theorems apply
in the directed case, we can extend our model and give each playeri a maximum cost max(i) beyond
which he would rather pay nothing and not connect his terminals. It suffices to make a new terminalt ′i
for each playeri, with a directed edge of cost 0 toti and a directed edge of cost max(i) to s.

4 General connection games

In this section we deal with the general case of players that can have different numbers of terminals and
do not necessarily share the same source terminal. As stated before, in this case the price of anarchy can
be as large asN, the number of players. However, even the price of stability may be quite large in this
general case.

Consider the graph illustrated inFigure 8, where each playeri owns terminalssi andti . The optimal
centralized solution has cost 1+3ε. If the path of length 1 were bought, each playeri > 2 will not want
to pay for anyε edges, and therefore the situation of players 1 and 2 reduces to the example inSection2
of a game with no Nash equilibria. Therefore, any Nash equilibrium must involve the purchase of the
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Figure 8: A game with high price of stability.

path of lengthN− 2. In fact, if each playeri > 2 buys 1/(N−2) of this path, then we have a Nash
equilibrium. Therefore, for anyN > 2, there exists a game with the price of stability being nearlyN−2.

Because the price of stability can be as large asΘ(N), and sometimes pure Nash equilibria may
not exist at all, we cannot hope to be able to provide cheap Nash equilibria for the multi-source case.
Therefore, we consider how cheapα-approximate Nash equilibria with smallα can be, and obtain the
following result, which tells us that there always exists a 3-approximate Nash equilibrium as cheap as
the optimal centralized solution.

Theorem 4.1. For any optimal centralized solution T∗, there exists a 3-approximate Nash equilibrium
such that the purchased edges are exactly T∗.

We prove this theorem inSection4.3using the sufficient conditions for an approximate Nash equi-
librium of Theorem 4.2. In Section4.2 we address the key special case where the underlying graph is
a path, which is then extended to the general case via a simple induction. InSection4.4we give lower
bounds and a polynomial time algorithm for finding an approximate Nash equilibrium.

4.1 Connection sets and sufficient conditions for approximate Nash equilibria

Given a set of bought edgesT, denote by astable payment pi for playeri a payment such that playeri has
no better deviation thanpi , assuming that the rest ofT is bought by the other players. A Nash equilibrium
must consist of stable payments for all players. However, what if in some solution, a player’s payment
pi is not stable, but is a union of a small number of stable payments? This implies that each player’s best
deviation is not much less than its current payment. Specifically, we have the following general theorem.

Theorem 4.2. Suppose we are given a payment scheme p= (p1, . . . , pN), with the set of bought edges
T . Further, suppose that for all i, pi can be decomposed intoα sub-payments p1, . . . , pα (together
summing to pi) such that each of sub-payment is a stable payment for i with respect to T . Then p is an
α-approximate Nash equilibrium.

Proof. Let p′i be the best deviation of playeri given p, and letp1, . . . , pα be the stable payments which
together sum topi . The fact thatp′i is a valid deviation fori means that the set of bought edgesT with
pi taken out andp′i added still connects the terminals ofi. p j being a stable payment means that ifi

THEORY OFCOMPUTING, Volume 4 (2008), pp. 77–109 91



E. ANSHELEVICH, A. DASGUPTA, É. TARDOS, AND T. WEXLER

only pays forp j and the rest ofT is bought by other players, then the best deviation ofi is at least as
expensive asp j . In this case,p′i is still a possible deviation, since if taking outpi and addingp′i connects
the terminals ofi, then so does taking outp j and addingp′i . Therefore, we know that the cost ofp′i is no
smaller than the cost of anyp j , andα ·cost(p′i)≥ cost(pi), wherecost(pi) denotes the total cost fori of
playing strategypi .

Notice that the converse of this theorem is not true. Consider an example where playeri is contribut-
ing to an edge which it does not use to connect its terminals. If this edge is cheap, this would still form
an approximate Nash equilibrium. However, this edge would not be contained in any stable payment of
playeri, sopi would not be a union of stable payments.

To proveTheorem 4.1, we will construct a payment scheme on the optimal centralized solution such
that each player’s payment is a union of 3 stable payments. The stable payments we use for this purpose
involve each edge being paid for by a single player, and have special structure. We call these payments
connection sets. Since there is no sharing of edge costs by multiple players in connection sets, we will
often use sets of edges and sets of payments interchangeably.T∗ below denotes an optimal centralized
solution, which we know is a forest.

Definition 4.3. A connection setS of player i is a subset of edges ofT∗ such that for each connected
componentC of the graphT∗ \S, we have that either

(1) any player that has terminals inC has all of its terminals inC, or

(2) playeri has a terminal inC.

Intuitively, a connection setSis a set such that if we removed it fromT∗ and then somehow connected
all the terminals ofi, then all the terminals of all players are still connected in the resulting graph. We
now have the following lemma, the proof of which follows directly from the definition of a connection
set.

Lemma 4.4. A connection set S of player i is a stable payment of i with respect to T∗.

Proof. Suppose that playeri only pays exactly for the edges ofS, and the other players buy the edges in
T∗\S. Let Q be a best deviation ofi in this case. In other words, letQ be a cheapest set of edges such
that the set(T∗\S)∪Q connects all the terminals ofi. To prove thatS is a stable payment fori, we need
to show thatcost(S)≤ cost(Q).

Consider two arbitrary terminals of some player. If these terminals are in different components of
T∗\S, then by definition of connection set, each of these components must have a terminal ofi. There-
fore, all terminals of all players are connected in(T∗\S)∪Q, since(T∗\S)∪Q connects all terminals of
i. SinceT∗ is optimal, we know thatcost(T∗)≤ cost((T∗\S)∪Q). SinceS⊆ T∗ andQ is disjoint from
T∗\S, thencost((T∗\S)∪Q) = cost(T∗)−cost(S)+cost(Q), and socost(S)≤ cost(Q).

As a first example of a connection set consider the edgesSi of T∗ that are used exclusively by player
i. More formally, letT i be the unique smallest subtree ofT∗ containing all terminals of playeri, and let
Si be the set of edges belonging only toT i and no other treeT j .

Lemma 4.5. The set Si defined above is a connection set for player i.

THEORY OFCOMPUTING, Volume 4 (2008), pp. 77–109 92



NEAR-OPTIMAL NETWORK DESIGN WITH SELFISH AGENTS

Q(u1)

u2u1 u3 u4

vn
Q(u2) Q(u3) Q(u4)

Q(u1)

u3u2 u4 u5

Q(u2) Q(u3) Q(u4)

(c)

(b)

u6

u5

Q(u1)

u2u1 u3 u4

vn
Q(u2) Q(u3)

Q(u4)

(a)

v1

u1

v1

Figure 9: The pathsQ(u) for a single playeri. (a) i has no terminal inUn (b) i has a terminal inUn (c) i
is the special player ofLemma 4.11that has terminals both inv1 andvn.

Proof. Suppose to the contrary that there are at least two components ofT∗\Si that contain terminalst1
andt2 of some playerj 6= i. SinceT∗ is a tree that connects all terminals, this means that the path in
T∗ betweent1 andt2 must also be contained inT j . But this implies that the edges ofSi whose removal
disconnected this path also belong toT j , which contradicts the definition ofSi .

Each playeri will pay for this connection set, the set of edges used only by playeri. We want each
player to pay for at most 2 additional connection sets. Without loss of generality we can contract the
edges now paid for, forming a new treeT∗ which the players must pay for. For the remainder of this
section we will assume that each edge belongs to at least two differentT i ’s, and will have players pay
for at most two connection sets.

4.2 Approximate Nash equilibrium in paths

In this subsection we consider the key special case when the treeT∗ is a pathP. In the next section we
use induction to extend the proof to the general case.

We will usevk, k = 1, . . . ,n to denote the nodes on the pathP in the orderv1, . . . ,vn, and will refer
to the terminals in this order, for example, the “first” terminal of playeri will mean the one closest tov1.
Denote the set of all terminals located atvk by Uk, and assume that each edge is in at least two different
T i ’s as mentioned above.

Roughly speaking, the idea is that for each playeri we associate an edge of the path with each
terminal that belongs to playeri, and have playeri pay for these edges. For a terminalu we define the

THEORY OFCOMPUTING, Volume 4 (2008), pp. 77–109 93



E. ANSHELEVICH, A. DASGUPTA, É. TARDOS, AND T. WEXLER
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Figure 10: The bold edges along the path form a single connection set connectingtwo neighboring
terminals of players 1 and 2.

set of edgesQ(u) as the possible edges that can be associated withu. For every terminalu∈Uk owned
by a playeri, with k 6= n, define a subpathQ(u) as follows (illustrated onFigure 9(a)). If i owns another
terminal inU` with ` > k, then setQ(u) to be the subpath ofP from vk to the first such nodev`. If there
is no such node (becauseu is i’s last terminal inP), setQ(u) to be the subpath ofP starting at the first
terminal ofi, and ending atvk. Notice thatQ(u) is not defined foru∈Un, so if i has a terminal inUn,
theQ(u) paths for terminals ofi will look like Figure 9(b).

A key observation about theQ sets is that if a playeri pays for one edge in eachQ(u) (excluding the
one belonging to the last terminal) the resulting set forms a connection set.

Lemma 4.6. Consider a payment Si by player i that contains at most one edge from each path Q(u),
where u are terminals of i excluding the last terminal of i. Then, Si forms a connection set.

Proof. Every component ofP\Si contains a terminal ofi, since there is a terminal ofi between every
two Q(u)’s for u belonging toi, as well as before the first suchQ(u), and after the last one. This means
thatSi is a single connection set.

Unfortunately, we cannot assign each edge to a different terminal, as shown by the example of
Figure 10. The bold edges in this example are used only by players 1 and 2, and belong to theQ paths
of the first terminals of players 1 and 2. This leaves us with three edges and only two terminals to assign
them to. However, note that the set of bold edges is a single connection set by itself, even though it
contains more than one edge in everyQ path. We say that a setL of edges along the path is coupledif
all the edgese∈ L belong to the exact same setsQ(u) for u∈ ∪Uk. We need to extend our ideas so far
to allow us to assign such coupled sets of edges to a terminal, rather than just assigning a single edge.

Definition 4.7. A max-coupled-setL is a maximal set of edges ofP such that for every edgee∈ L, the
set of pathsQ(u) that containe is exactly the same, foru∈

⋃
Uk.

The key property of max-coupled-sets is they form a connection set between two consecutive termi-
nals of one player.

Lemma 4.8. Consider a max-coupled-set L, and order all components C of P\L along the path. For all
components C except the two end components, any player that has terminals in C has all of its terminals
in C.

Proof. Consider a componentC of P\L that is neither the first nor the last component, such that a player
j has a terminalt in C. Consider the edges ofL directly adjacent toC. If the earlier such edge belongs
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to some pathQ(u) with u a terminal of j, then this gives us a contradiction, since the pathsQ(u) for
terminals of j change att, and never become the same. This contradicts the fact thatL is a coupled set,
since both edges ofL must be in exactly the sameQ paths. On the other hand, if the earlier edge ofL
adjacent toC does not belong to any pathQ(u) with u a terminal ofj, then for the edges ofL on the other
side ofC to belong to the sameQ paths, it must be that all terminals ofj are insideC, as desired.

This implies the following extension ofLemma 4.6

Lemma 4.9. Consider a payment Si by player i that contains at most one max-coupled-set from each
path Q(u), where u are terminals of i excluding the last terminal of i along the path. Then, Si forms a
connection set.

Proof. We must prove that every component ofP\Si obeys one of the two properties from the definition
of a connection set. Consider a component ofP\Si that does not contain a terminal ofi. By the argu-
ment inLemma 4.6, this component must be bordered by edges of the same max-coupled-set, and by
Lemma 4.8, this component satisfies the first property in the definition of a connection set.

Now we are ready to prove our main result for paths. To help with the induction proof appearing in
Subsection4.3for the case of trees, we need to prove a somewhat stronger statement for paths.

Theorem 4.10. Assume the optimal tree T∗ is a path P, and each edge of P is used by at least two
players. There exists a payment scheme fully paying for path P such that each player i pays for at most
2 connection sets. Moreover, players with terminals in Un pay for at most 1 connection set.

Proof. In our payment, we will assign max-coupled-sets of edges to terminalsu. By Lemma 4.9the
edgesSi assigned to the terminals of playeri, excluding the last terminal ofi, form a single connection
set. For players that do not have a terminal inUn the max-coupled-set assigned to the last terminal
forms a second connection set. Since a max-coupled-set is a connection set by itself, this would meet
the conditions of the Theorem.

To form this payment, we form a bipartite matching problem as follows. LetY have a node for each
max-coupled-set of edges inP, and letZ be the nodes ofv1, . . . ,vn−1 of P. Form an edge between a
nodevk ∈ Z and nodeL ∈Y if there exists some terminalu∈Uk such thatL ⊆Q(u). This edge signifies
that some player owningu∈Uk could pay forL. In addition, ifu∈Uk is the last terminal of a player
i, but k 6= n, then we also form an edge betweenvk ∈ Z andL ∈ Y if L ⊆ T i . These edges signify the
“additional” max-coupled-set that this player might pay for since it owns no terminals inUn.

We claim that this graph has a matching that matches all nodes inY, and we will use such a matching
to assign the max-coupled-sets to terminals according to the edges in this matching. To prove that such
a matching exists, we use Hall’s Matching Theorem. ForX ⊆Y, define∂ (X) to be the set of nodes inZ
which X has edges to. According to Hall’s Matching Theorem, there exists a matching in this bipartite
graph with all nodes ofY incident to an edge of the matching if for each setX ⊆Y, |∂ (X)| ≥ |X|. To
prove that this condition is satisfied, arrange the edgesE(X) in the max-coupled-setsX in the order they
appear inP. We want to show that between every two max-coupled-sets ofX, there is a node belonging
to ∂ (X). This will yield |X|−1 nodes in∂ (X). Then we show that there is an additional node in∂ (X)
before all the edgesE(X).

THEORY OFCOMPUTING, Volume 4 (2008), pp. 77–109 95



E. ANSHELEVICH, A. DASGUPTA, É. TARDOS, AND T. WEXLER

Consider some edgee of E(X) that belongs to a max-coupled-setL, and suppose a previous edgee′

in E(X) belongs to a different a max-coupled-setL′. Since these are different and maximal coupled sets,
there must be some pathQ(u) that contains exactly one ofe,e′. The player corresponding to this path
Q(u) must have a terminal betweeneande′ that is in the set∂ (X).

We need to prove that there is an additional node in∂ (X) before the setE(X). Let L be the first
max-coupled-set ofX that appears inP. The player corresponding to a pathQ(u) containingL must
have a terminal in∂ (X) beforeL.

Therefore,|X| ≤ |∂ (X)| for all X ⊂ Y, and hence there always exists a matching that covers the
max-connection-setsY.

This finishes our proof that ifT∗ is a path, then there exists a 3-approximate Nash equilibrium that
purchases exactlyT∗ (2-approximate when all edges inT∗ are used by at least two players). To prove
the general case, however, we need the following strengthening.

Lemma 4.11. Suppose there exists a player i with a terminal s∈U1 and a terminal in Un. Then there
exists a payment scheme as inTheorem 4.10and moreover i has at least 2 terminals in the component
of P\Si containing vn.

Proof. We change the definition ofQ(u) for the terminals ofi, as shown inFigure 9(c). We letQ(u) be
the path immediately to the left ofu, until it reaches the next terminal ofi.

We show that the proof ofTheorem 4.10goes through in this case with minor changes. First note
that the max-coupled-sets are exactly the same sets as before. Note that the max-coupled-sets assigned
to playeri now will form a single connection set, and further the last terminal ofi beforeUn would be in
the component ofP\Si containingvn, as we desired.

We must now verify that the bipartite graph formed in the proof ofTheorem 4.10actually has a
matching that covers all of the max-coupled sets. To do this, we need to prove that|X| ≤ |∂ (X)| for a
setX ⊂Y, which we do once again by showing that between every pair of max-coupled-sets inX there
exists a node of∂ (X), and there is a further node of∂ (X) in front of the setE(X).

As before, if we have two edgese ande′ that belong to two different max-coupled-sets, then any
player j that has a setQ(u) containing exactly one ofe ande′ must have a terminal in∂ (X) between
e ande′. To see that we have a node in∂ (X) beforeE(X) let L be the first max-coupled-set ofX that
appears inP, the let j be the player corresponding to a pathQ(u) containingL. If j 6= i then j has a
terminal in∂ (X) beforeL. Recall that each edge is used by at least two players so we can select aQ(u)
set containingL that belongs to a playerj 6= i.

We can now continue with the process given in the proof ofTheorem 4.10to form the desired
payment scheme.

We will need the following further observation about the proof: in the proof at most one terminal is
assigned any set of edges among the terminals in each setUk, for any nodevk of the path.

Lemma 4.12. There exists a set
A = {u1,u2, . . . ,un−1}

with uk ∈ Uk such that only the terminals u1, . . . ,un−1 are assigned max-coupled-sets in the payment
formed in the proof ofLemma 4.11.

THEORY OFCOMPUTING, Volume 4 (2008), pp. 77–109 96



NEAR-OPTIMAL NETWORK DESIGN WITH SELFISH AGENTS

4.3 Proof ofTheorem 4.1(Existence of 3-approx Nash equilibrium)

In this subsection, we prove that for any optimal centralized solutionT∗, there exists a 3-approximate
Nash equilibrium such that the purchased edges are exactlyT∗. For simplicity of the proof, we assume
thatT∗ is a tree, since otherwise we can apply this proof to each component ofT∗.

Recall that we usedT i to denote the unique smallest subtree ofT∗ which connects all terminals of
player i. We formed the first connection set usingLemma 4.5by the edges that belong to a singleT i .
Contracting these edges, we can assume that all edges are used by at least two players, and we will
construct a payment scheme in which each player is paying for at most 2 connection sets.

Intuition and proof outline The idea of the proof is to select two terminals of a playeri, let P be the
path connecting them inT∗, and lett1 = v1, . . . ,vn = tn denote the nodes along the pathP. We apply the
special case for paths,Lemma 4.11, to the pathP with all playersj with setsT j ∩P nonempty. Then we
apply the induction hypothesis for each subtree rooted at the nodesvk of pathP, where we use the one
player j (by Lemma 4.12) that has a max-coupled-set assigned to nodevk as a “special” player, whose
two terminals we select to form a path as above.

To make the induction go through we need a stronger version ofTheorem 4.1analogous to the
stronger version of the path lemma (Lemma 4.11).

Theorem 4.13. Assume each edge of the optimal tree T∗ is used by at least two players, let t be a
terminal, and i a player with terminal t. Then there exists a way to pay for T∗ by assigning at most two
connection sets to each player, so that the following hold:

(1) each player j that has t as a terminal has at most one connection set assigned,

(2) for the connection set Si assigned to player i the set T∗\Si has an additional terminal of i in the
component containing terminal t.

Proof. Let s be another terminal of playeri, and letP be the path connectings andt in T∗. Let s =
v1, . . . ,vn = t be the sequence of nodes alongP, and letT∗

k be the subtree ofT∗\P rooted at nodevk.
Now we define a problem on pathP, and subproblems for each of the subtreesT∗

k . First we define
the problem for pathP. A player j will have a terminal at nodevk if player j has a terminal in the subtree
T∗

k . With this definition, each edge ofP is used by at least two players. We applyLemma 4.11with i as
the special player (by choice of the pathi has bothvn andv1 as terminals in the induced problem on the
path). We assign each player connection sets.

Next we will define the problems on the treesT∗
k . For this subproblem we say thatvk is a terminal

for any player that has a terminal outside of the subtreeT∗
k . We use the induction hypothesis to assign

connection sets to players inT∗
k . Recall that byLemma 4.12at most one player, say playerik, is assigned

a max-coupled-set to a terminal invk on the path problem. We usevk as the terminalt in the recursive
call, andik as the special player.

To finish the proof we need to argue that the assignment satisfies the desired properties of our theo-
rem. We will need to have a few cases to consider.

Consider a playerj that hasT j ∩P= /0. This playerj has all its terminals in a subtreeT∗
k , and hence

by the induction hypothesis, it has at most two connection sets assigned in subtreeT∗
k .
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(a) (b)

Figure 11: Sets assigned to a player that do not form one connection set. The nodes in dark are terminals
for one player j, and dark edges are assigned to this player with the grey edge assigned to the last
terminal of j along the path. (a): the case whent 6∈ T j , and a set (the grey edge) is assigned to the last
terminal of j alongP. (b): the case when no connection set is assigned to the last terminal ofj alongP.

Now consider a playerj that hast as a terminal, butj 6= i. For each subtree that has terminals of
player j the recursive call has assigned at most one connection set to playerj, and we may have also
assigned a connection set at pathP. Note that in the pathP the player j owns terminalt, so its last
terminal ist, and has no setQ(t). We claim that combining all the setsj is paying for into one setSj

forms a single connection set. To see why consider the connected components ofT j\Sj . Connected
components contained in a subtreeT∗

k satisfy one of the connection set properties by the induction
hypothesis. If a terminalu at a nodevk of the path problem was assigned a max-coupled-set along the
pathP then in the recursive call we guaranteed that playerj has a terminal connected to the rootvk, so
the component containingvk has a terminal inT j\Sj . Finally, the last component along the path contains
the terminalt.

A similar argument applies for the special playeri: the union of all connection sets assigned toi
for the path and for the recursive calls combines to a single connection setSi that satisfies the extra
requirement that setT∗\Si has an additional terminal in the component containing terminalt.

Finally, consider a playerj wheret is not a terminal ofj (though it may be included inT j ). As before
for each subtree that has terminals of playerj the recursive call has assigned at most one connection set
to player j, and we may have also assigned a connection set at pathP. This case differs from the
previous ones in two points. First, ift 6∈ T j then the last nodevk j of T j along the path may have an
extra connection set assigned to it; second, the nodet is not a terminal for playerj. As a result of
these differences, combining all the sets assigned to playerj to a single setSj may not form a single
connection set. Consider the connected components ofT j\Sj . Connected components fully contained in
a subtreeT∗

k satisfy one of the connection set properties by the induction hypothesis. Most components
that intersect the pathP must also have a terminal of playerj: if a terminalu in the path problem at
a nodevk was assigned a connection set along the pathP then in the recursive call we guaranteed that
player j has a terminal connected to the rootvk, hence the component containing nodevk has a terminal
in T j\Sj .
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.   .   . .   .   .

s1 s2 s3 sN t1 t2 t3 tN

Figure 12: A graph where players must pay for at least 3 connection sets.

However, there can be components ofT j\Sj intersecting the pathP that do not satisfy either of the
connection set properties. Ifvk j is the last node along the pathP in T j , then ifvk j has a max-coupled-set
assigned to playerj (e. g., if vk j 6= t) then the component(s) ofT j\Sj adjacent to this max-coupled-set
may not satisfy either of the connection set properties. Otherwise, the last component along the path
P may not satisfy these properties. SeeFigure 11for examples for each possibility. InFigure 11(a),
the grey edge is the max-coupled-set assigned tovk j , which results in the highlighted component not
having any terminals ofj. In Figure 11(b), nothing is assigned tovk j , and this also results in the high-
lighted component not having any terminals ofj. Notice, however, that all other components obey the
connection set properties since they each have a terminal ofj. In either case (whethervk j has a max-
coupled-set assigned to it or not), removing one of the max-coupled-setsL j (the one assigned tovk j , or
one bordering the final component alongP with no terminals) results in a connection setS̄j = Sj\L j ,
and the max-coupled-setL j alone forms a second connection set.

4.4 Extensions and lower bounds

We have now shown that in any game, we can find a 3-approximate Nash equilibrium purchasing the
optimal network. We proved this by constructing a payment scheme so that each player pays for at most
3 connection sets. This is in fact a tight bound. In the example shown inFigure 12, there must be players
that pay for at least 3 connection sets. There areN players, with only two terminals (si andti) for each
playeri. Each player must pay for edges not used by anyone else, which is a single connection set. There
are 2N−3 other edges, and if a playeri pays for any 2 of them, they are 2 separate connection sets, since
the component between these 2 edges would be uncoupled and would not contain any terminals ofi.
Therefore, there must be at least one player that is paying for 3 connection sets.

This example does not address the question of whether we can lower the approximation factor of our
Nash equilibrium to something other than 3 by using a method other than connection sets. As a lower
bound, inSection5 we give a simple sequence of games such that in the limit, any Nash equilibrium
purchasing the optimal network must be at least(3/2)-approximate.

Polynomial-time algorithm Since the proof ofTheorem 4.1is constructive, it actually contains a
polynomial-time algorithm for generating a 3-approximate Nash equilibrium onT∗. We can use the
ideas fromTheorem 3.7to create an algorithm which, given anα-approximate Steiner forestT, finds a
(3+ ε)-approximate Nash equilibrium which pays for a Steiner forestT ′ with c(T ′)≤ c(T), as follows.
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However, this algorithm requires a polynomial-time optimal Steiner tree finder as a subroutine. We can
forego this requirement at the expense of a higher approximation factor.

We start by definingγ = εc(T)/((1+ ε)nα), for ε small enough so thatγ is smaller than the min-
imum edge cost. The algorithm ofTheorem 4.1generates at most 3 connection sets for each playeri,
even if the forest of bought edges is not optimal. We use this algorithm to pay for all butγ of each edge
in T. We can check if each connection set is actually cheaper than the cheapest deviation of playeri,
which is found by the cheapest Steiner tree algorithm. If it is not, we can replace this connection set with
the cheapest deviation tree and run this algorithm over again. The fact that we are replacing a connection
set means that all the terminals are still connected in the new tree. If we modifyT in this manner, it is
easy to see that we have decreased its cost by at leastγ.

We can now use the arguments fromTheorem 3.7to prove that this algorithm produces a(3+ ε)-
approximate Nash equilibrium, and runs in time polynomial inn, α, andε−1. It requires a poly-time
Steiner tree subroutine, however. If each player only has two terminals, finding the cheapest Steiner tree
is the same as finding the cheapest path, so this is possible, and we can indeed find a cheap(3+ ε)-
approximate Nash equilibrium in polynomial time.

For the case where players may have more than two terminals, we can easily modify the above
algorithm to use polynomial time approximations for the optimal Steiner tree, at the expense of a higher
approximation factor. If we use a 2-approximate Steiner forestT, and an optimal Steiner tree 1.55-
approximation algorithm from [27] as our subroutine, then the above algorithm actually gives a(4.65+
ε)-approximate Nash equilibrium onT ′ with c(T ′)≤ 2·OPT, in time polynomial inn andε−1.

5 Lower bounds and NP-hardness

Lower bounds for approximate Nash on the optimal network

Claim 5.1. For any ε > 0, there is a game such that any equilibrium which purchases the optimal
network is at least a(3

2 − ε)-approximate Nash equilibrium.

Proof. Construct the graphHN on 2N vertices as follows. Begin with a cycle on 2N vertices, and
number the vertices 1 through 2N in a clockwise fashion. For vertexi, add an edge to verticesi +N−1
(mod 2N) and i + N + 1 (mod 2N). Let all edges have cost 1. Finally, we will addN players with 2
terminals,si andti , for each playeri. At node j, add the labelsj if j ≤N andt j−N otherwise.Figure 13(a)
shows such a game withN = 5.

Consider the optimal networkT∗ consisting of all edges in the outer cycle except(s1, tN). We
would like to show that any Nash which purchases this solution must be at least(6N−21)/(4N−11)-
approximate. This clearly would prove our claim.

First we show that players 1 andN are not willing to contribute too much to any solution that is
better than(3/2)-approximate. Suppose we have such a solution. Definex to be player 1’s contribution
to his connecting path inT∗, and definey to be his contribution to the remainder ofT∗. Thus player
1 has a total payment ofx+ y. Player 1 can deviate to only pay forx. Furthermore, player 1 could
deviate to purchase onlyy and the edge(s1, tN). If we have a solution that is at most(3/2)-approximate,
then we have thatx/(x+y) ≥ 2/3 and similarlyy+1/(x+y) ≥ 2/3. Taken together this implies that
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Figure 13: A game with best Nash equilibrium on OPT tending to at least a3
2-approximation.

1/(x+y)≥ 1/3, orx+y≤ 3. A symmetric argument shows that playerN is also unwilling to contribute
more than 3.

Thus we have that the remainingN−2 players must together contribute at least 2N−7. Therefore
there must be some player other than 1 orN who contributes at least(2N−7)/(N−2). Suppose player
i is such a player. Letx be the amount that playeri contributes to his connecting path inT∗. Let y be his
contribution to(si−1,si) and letz be his contribution to(ti , ti+1). SeeFigure 13(b).

Now consider three possible deviations available to playeri. He could choose to contribute onlyx.
He could contributey and purchase edge(si−1, ti) for an additional cost of 1. Or he could contribute
z and purchase edge(si , ti+1), also for an additional cost of 1. We will only consider these possible
deviations, although of course there are others. Note that ifi was contributing to any other portion of
T∗, then we could remove those contributions and increasex, y, andz, thereby strictly decreasingi’s
incentive to deviate. Thus we can safely assume that these arei’s only payments, and hence

x+y+z≥ 2N−7
N−2

.

Sincei is currently paying at leastx+y+z, we know that his incentive to deviate is at least

max
(x+y+z

x
,
x+y+z

y+1
,
x+y+z

z+1

)
.

This function is minimized whenx = y+1 = z+1. Solving forx we find that

x≥ 4N−11
3N−6

.

Thus playeri’s incentive to deviate is at least

x+y+z
x

≥ 3x−2
x

= 3− 2
x
≥ 3−2

3N−6
4N−11

=
6N−21
4N−11

.
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Figure 14: Gadgets for the NP-completeness reduction.

Therefore asN grows, this lower bound on playeri’s incentive to deviate tends towards 3/2. Note that
in this proof, we only considered one optimal network, namelyT∗. If we modify G by increasing the
costs of all edges not inT∗ by some smallε > 0, thenT∗ is the only optimal network. Repeating the
above analysis under these new costs still yields a lower bound of 3/2 for the best approximate Nash on
T∗ in the limit asN grows andε tends to 0.

NP-completeness

In this section, we present a brief proof that determining the existence of Nash equilibria in a given
graph is NP-complete if the number of players isO(n) (wheren is the number of nodes in the graph).
We present a reduction from 3-SAT to show that the problem is NP-hard. The graph constructed will
have unit cost edges.

Consider an arbitrary instance of 3-SAT with clausesCj and variablesxi . We will have a player for
each variablexi , and two players for each clauseCj . For each variablexi construct the gadget shown
in Figure 14a. The source and sink of the playerxi are the verticessi andti respectively. When player
xi buys the left path or right path, this corresponds toxi being set to be true or false, respectively. For
clarity, we will refer to this player as being theith variable player.

Next, we construct a gadget for each clauseCj . The construction is best explained through an
example clauseCj = (x1∨ x2∨ x3) whose gadget is given inFigure 14b. The two players forCj have
their source sink pairs as(sj1, t j1) and(sj2, t j2) respectively. We will call both players on this gadget
clause players. The final graph is constructed by gluing these gadgets together at the appropriate labeled
edges. Specifically, the edges in clause gadgetCj labelede1T , e2T , ande3F are the same edges that
appear in the corresponding variable gadgets. In other words, among all clauses and variable gadgets,
there is only one edge labeledeiT and only one labeledeiF , and all the interior nodes in the gadget for
each clauseCj are nodes in variable gadgets.

Suppose that there is a satisfying assignmentA in our 3-SAT instance. Consider the strategy in which
variable playeri fully buys the left path ifxi is true inA and fully buys the right path otherwise. Since
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this is a satisfying assignment, by our construction each clause gadget has at least one interior edge fully
paid for by a variable player. For each clauseCj , let e be one such edge, and let both players on this
gadget buy the unique path of length 3 that connects their terminals which uses edgee. It is easy to see
that the clause players are satisfied as the cost of this path to each clause player is 2, the minimum that
he has to pay on any path from source to sink under the current payment scheme. The cheapest deviation
for each variable player also costs 2, and therefore they do not have any incentive to move either. Thus,
this forms a Nash equilibrium.

Suppose now that there is a Nash equilibrium. We will argue that this Nash equilibrium has to have
a specific set of edges paid for. First, note that the contribution of each player is not more than 2, as the
length of the shortest path is exactly 2.

Now suppose some perimeter edge of clauseCj is being bought. We know from the example in
Figure 1that perimeter edges cannot be bought by the clause players inCj alone, for that would not
constitute a Nash strategy. Therefore there must be some other player, variable or clause, contributing
to the perimeter edge ofCj . Also, since this is a Nash strategy, any perimeter edge on which there is
a positive contribution by any player must be fully bought. And once any perimeter edge ofCj has a
positive contribution from a non-Cj player the payments of both the clause players ofCj will be strictly
less than 2 in a Nash strategy.

Suppose one of the clauses,Cj , has some perimeter edge bought. Since at Nash equilibrium, the set
of edges bought must form a Steiner forest, we look at the component of the Steiner forest that has the
clauseCj . We will show that the number of edges in this component is more than twice the number of
players involved. Then, there must be a player who is paying more than 2, and hence this cannot be a
Nash equilibrium.

Suppose there arex clause players andy variable players in the component of the forest containing
Cj . We know from the example inFigure 1thatx+y > 2. Then, the total number of nodes in the Nash
component containingCj is at least 2x+ 3y as we have to count the two source-sink nodes for each
clause player and the three nodes on the path of each variable player. Since this is a connected tree, the
total number of edges in this component is 2x+3y−1. The average payment per player is then given by

2x+3y−1
x+y

= 2+
y−1
x+y

.

Now if y > 1, then the average payment per player is more than 2. Thus there must be some player who
is paying more than 2, which is infeasible in a Nash. Ify = 1, then the average payment per player is
exactly 2. But again, since we know that the clause players ofCj pay strictly less than 2 each, there
must be some player who pays strictly more than 2, which is again impossible. Lastly, we cannot have
y = 0 as then whenever a clause player participates in paying for another clause, he must use a node in
the path of a variable player, and thereby include this variable player in the component ofCj .

This implies that variable players only select paths within their gadget. Furthermore, it implies that
variable players must pay fully for their entire path. Supposei is a variable player who has selected the
left (true) path, but has not paid fully for the second edge in that path. The remainder of this cost must be
paid for by some clause player or players. But for such a clause player to use this edge, he must also buy
two other edges, which are not used by any other player. Hence such a clause player must pay strictly
more than 2. But there is always a path he could use to connect of cost exactly 2, so this can not happen
in a Nash equilibrium. Thus we have established that variable players pay fully for their own paths.
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Now consider any clause gadget. Since we have a Nash equilibrium, we know that only internal
edges are used. But since each clause player can connect his terminals using perimeter edges for a cost
of exactly 2, one of the interior variable edges must be bought by a variable player in each clause gadget.
If we consider a truth assignmentA in which xi is true if and only if playeri selects the left (true) path,
then this obviously satisfies our 3-SAT instance, as every clause has at least one variable forcing it to
evaluate to true.

Therefore, this game has a Nash equilibrium if and only if the corresponding formula is satisfiable,
and since this problem is clearly in NP, determining whether a Nash equilibrium exists is NP-complete.

Single-Source Multi-Source

Result ∃ Nash equilibrium ∃ 3-approx Nash equilibrium
with cost equal to OPT with cost equal to OPT

Can handle directed Yes No
Players can have

more than 2 terminals No Yes
Players can have

maximum amount they
are willing to pay, max(i) Yes No

Polynomial time alg Finds(1+ ε)-approx Finds(4.65+ ε)-approx
Nash equilibrium that Nash equilibrium that

costs at most 1.55·OPT costs at most 2·OPT

Table 1: Extensions for our main results in the Connection Game (OPT is the cost of the centralized
optimum).

Single-Source Multi-Source

Exists Nash (1,1) (3,1)
Can find Nash in poly-time (1+ ε,1.55) (4.65+ ε,2)

Lower Bounds on Existence (1,1) (1.5,1)

Table 2: Bicriteria approximations, written as(β ,α), meaning there exists (or it is possible to find) a
β -approximate Nash equilibrium that is only a factor ofα more expensive than the centralized optimum.

6 Conclusion and summary of results

A summary of the major results in this paper can be found in Tables1 and2. The first table summa-
rizes our results for the single-source and the general case, and the extensions for which these results
hold. Table2 summarizes our results in terms of bicriteria approximations, where the goal is to find an
approximate Nash equilibrium that is approximately optimal in cost. Notice that while in the general
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multi-source case we have shown the existence of a 3-approximate equilibrium on any optimal network,
and a lower bound of 1.5 for this approximation, most of the bicriteria-approximation space remains
unexplored. For example, it is still possible that there exists a(1+ ε)-approximate Nash equilibrium
that costs(1+ ε) times the optimal centralized solution. Moreover, it is also possible that there exists a
(1+ε)-approximate Nash equilibrium that costs 2·OPT andcan be found in polynomial time. Such a re-
sult would be extremely interesting, since when considering(β ,α)-approximate solutions as inTable2,
it is often much more important to ensure thatβ is small instead ofα.
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