
THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209
http://theoryofcomputing.org

An O(logn) Approximation Ratio for the
Asymmetric Traveling Salesman Path

Problem∗

Chandra Chekuri Martin Ṕal

Received: June 20, 2007; published: October 15, 2007.

Abstract: We consider a variant of the traveling salesman problem (TSP): Given a directed
graphG = (V,A) with non-negative arc lengths̀: A→ R+ and a pair of verticess, t, find
ans-t walk of minimum length that visits all the vertices inV. If ` satisfies theasymmetric
triangle inequality, the problem is equivalent to that of finding ans-t path of minimum
length that visits all the vertices. We refer to this problem as theasymmetric traveling
salesman path problem(ATSPP). Whens= t this is the well known asymmetric traveling
salesman tour problem (ATSP). Although anO(logn) approximation ratio has long been
known for ATSP, the best known ratio for ATSPP isO(

√
n). In this paper we present a

polynomial time algorithm for ATSPP that has an approximation ratio ofO(logn). The
algorithm generalizes to the problem of finding a minimum length path or cycle that is
required to visit a subset of vertices in a given order.

∗A preliminary version of this paper appeared inProc. of APPROX, Springer LNCS Vol 4110, pages 95–103, 2006.

ACM Classification: 68W25, 68R10, 90C59

AMS Classification: F.2.2, G.2.2

Key words and phrases:combinatorial optimization, approximation algorithm, directed graph, travel-
ing salesman problem, traveling salesman path, asymmetric triangle inequality

Authors retain copyright to their papers and grant “Theory of Computing” unlimited
rights to publish the paper electronically and in hard copy. Use of the article is permit-
ted as long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, seehttp://theoryofcomputing.org/copyright.html.

c© 2007 Chandra Chekuri and Martin Pál

http://theoryofcomputing.org/copyright.html

C. CHEKURI AND M. PÁL

1 Introduction

In the classical traveling salesman problem (TSP) we are given an undirected (directed) graph with
non-negative edge (arc) lengths and we seek to find a Hamiltonian cycle of minimum length. It is an
extensively studied combinatorial optimization problem. TSP is NP-hard and also inapproximable—
both these facts follow easily from the NP-completeness of the Hamiltonian cycle problem. A more
tractable variant of the problem is obtained if we ask for a tour instead of a cycle; the tour is allowed to
visit a vertex more than once if necessary. In the undirected graph setting this relaxation is equivalent to
assuming that the edge lengths satisfy the triangle inequality and in directed graphs this is equivalent to
assuming that the arc lengths satisfy the asymmetric triangle inequality. The relaxed problem is referred
to as Metric-TSP in undirected graphs and ATSP in directed graphs. For Metric-TSP the best known
approximation ratio is 3/2 due to Christofides [10]. For ATSP an approximation ratio of log2n was
obtained by Frieze, Galbiati and Maffioli [13]. This ratio has been slightly improved [4, 17] and the best
ratio known currently is 0.842log2n [17].

In this paper we are concerned with the traveling salesmanpathproblem. The input to the problem
is a graph with edge (arc) lengths and two verticess and t. We seek a path froms to t of minimum
length that visits all the vertices. The path version is NP-hard and also hard to approximate to within any
polynomial factor via a reduction from the Hamiltonian path problem. We therefore consider the relaxed
version where the objective is to find a walk (that is allowed to visit a vertex multiple times) instead of a
path. We refer to undirected graph and directed graph versions as Metric-TSPP and ATSPP respectively.
For Metric-TSPP the best known approximation ratio is 5/3 due to Hoogeveen [16] (see [15] for a
different proof). The ATSPP problem does not seem to have been considered much in the literature and
we are only aware of the recent work of Lam and Newman [19] who give anO(

√
n) approximation. Our

main result is the following.

Theorem 1.1. There is an O(logn) approximation algorithm for theATSPPproblem.

We also consider a generalization of ATSPP. We are given a set of distinct vertices{v1,v2, . . . ,vk}
and seek a minimum length pathP (or cycle) that visits all vertices of the graph but visitsv1,v2, . . . ,vk

in that order. We can assume without loss of generality that the pathP starts atv1 and ends atvk. In
the undirected graph setting, this problem has been referred to as path-constrained TSP and is a special
case of a more general problem called precedence-constrained TSP [7]. Bachrach et al. [2] gave a 3-
approximation for the path-constrained TSP in metric spaces. Our approach for ATSPP generalizes to
the asymmetric version of the path-constrained TSP.

Theorem 1.2. There is an O(logn) approximation algorithm for the path-constrainedATSPP.

ATSPP vs ATSP: It is easy to see that anα approximation for ATSPP implies anα approximation
for ATSP; a given ATSP instance can be transformed in to an ATSPP instance on the same graph by
choosing an arbitrary vertexv and and settings = t = v. At first glance it might appear that ATSPP
can be reduced to ATSP by taking an instance of ATSPP and adding an arc(t,s) to the graph with an
appropriate length. The difficulty comes from the fact that a tour that uses the arc(t,s) one or more times
cannot be converted into a feasible path solution by removing the arc. To better understand the difficulty
in the directed setting and develop the main ingredient of our algorithm we give a brief overview of

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 198

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

the algorithm of Frieze et al. [13] for ATSP and a variant proposed by Kleinberg and Williamson [18]
(see [24] for a description and proof). Both algorithms work in an iterative fashion. We let OPT denote
the value of an optimum solution to a given instance.

The algorithm in [13] finds a collection of directed cycles that partition the vertex set (called a
cycle-cover in some settings) such that the total length of the cycles is minimized. This can be achieved
in polynomial time using a reduction to the minimum cost assignment problem [13]. Note that any
optimum solution to the given instance of ATSP is a single cycle that spans all vertices, and hence the
length of the cycles computed is at most OPT. From each cycle an arbitrary vertex is chosen to be the
cycle’s proxy and the problem is reduced to finding an ATSP tour in the graph induced on the proxy
vertices. A tour in the smaller graph can be extended to the original graph using the cycles. Further,
it can be easily seen that there must be a tour of length at most OPT in the new instance on the proxy
vertices.

In each iteration, the number of vertices is reduced by at least a half, as each cycle contains at least
two vertices. Thus, there are at most log2n iterations. The algorithm incurs a cost of OPT in each
iteration, hence the total length of the final tour is upper bounded by log2n·OPT.

The algorithm in [18] works differently. It finds a single cycle in each iteration such that the ratio
of the length of the cycle to the number of vertices in the cycle is minimum. Such a cycle (also called
a minimum mean-cost cycle) can be found in polynomial time [1]. An arbitrary vertex in the cycle
is chosen as a proxy and the algorithm works in a reduced graph with the non-proxy vertices of the
cycle removed. The analysis is similar to that of the analysis of the greedy algorithm for covering
problems, in particular the set cover problem [11]. This results in an approximation ratio of 2Hn where
Hn = 1+1/2+ · · ·+1/n is then-th harmonic number.

Both the algorithms described above crucially rely on the fact that cycles allow the problem size
to be reduced. Cycles can be used in a similar way for ATSPP as well. However, in ATSPP, cycles
cannot be relied on as the only building blocks since the solution to the problem might not contain any
cycle; for exampleG can be a directed simple path. In addition to cycles, we also need to consider paths.
However there is no obvious way to reduce the problem size using paths. We therefore restrict ourselves
to maintaining a single partial path froms to t. A simple, and indeed the only natural way, to augment a
partial pathP is to replace one of the arcs(u,v) of P by a subpathP′ from u to v that contains some yet
unvisited vertices. Our main technical contribution is the following: for any partial path thereexistsan
augmentation to a path that contains all vertices such that the length of augmentation is at most 2·OPT.
We combine this with the greedy approach similar to that in [18] to proveTheorem 1.1andTheorem 1.2.
We remark that in some recent work, Feige and Singh [12] show a generic way to use an approximation
algorithm for ATSP to obtain an approximation algorithm for ATSPP. However, they still need to use
an augmentation lemma similar (and more general) to the one we develop.

Related Work: TSP is a cornerstone problem for combinatorial optimization and there is a vast
amount of literature on many aspects including a large number of variants. The books [20, 14] pro-
vide extensive pointers as well as details. Our work is related to understanding the approximability of
TSP and its variants. One of the major open problems in approximation algorithms is whether ATSP
has a constant factor approximation or not. The natural LP relaxation for ATSP has only a lower bound
of 2 on its integrality gap [6]. Resolving the integrality gap of this formulation is also an important

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 199

C. CHEKURI AND M. PÁL

open problem. The path-constrained TSP problem is a special case of the precedence-constrained TSP
problem [7]: we are given a partial order on the vertices and the goal is to seek a minimum length cycle
that visits vertices in an order that is consistent with the given partial order. In [7] it is shown that this
general problem is hard to approximate even for special classes of metric spaces.

2 Preliminaries

Let G = (V,A) be an arc-weighted directed graph, and let` : A→ R+ be the edge lengths. For a pathP
in G let V(P) andA(P) denote the vertices and arcs ofP respectively. When the meaning is clear from
the context, we may useP instead ofV(P) or A(P). Let P(s, t) denote the set of alls t paths inG. A
pathP∈ P(s, t) is non-trivial if it contains internal vertices, that is|V(P)|> 2. LetC(s, t) denote the set
of cycles inG that donot contain eithers or t. Let P be a non-trivial path inP(s, t). Then thedensity
of P, denoted byd(P), is the ratio of the total arc length ofP to the number of internal vertices inP. In
other words

d(P) = ∑
a∈A(P)

`(a)
|V(P)−2|

.

Similarly, the density of a cycleC∈ C(s, t) is defined to bed(C) = ∑a∈A(C) `(a)/|V(C)|.

Lemma 2.1. Given a directed graph G and two vertices s, t, let λ ∗ be the density of a minimum density
non-trivial path inP(s, t). There is a polynomial time algorithm that either finds a path P∈ P(s, t) such
that d(P) = λ ∗ or finds a cycle C∈ C(s, t) such that d(C) < λ ∗.

Proof. We give a polynomial time algorithm that takes a parameterλ > 0 in addition toG ands, t and
outputs one of the following: (i) a non-trivial pathP∈ P(s, t) with d(P)≤ λ , (ii) a cycleC∈ C(s, t) with
d(C) < λ , (iii) a proof that no path inP(s, t) has a density at mostλ . This can be combined with binary
search to obtain the desired algorithm.

We remove arcs intos and out oft. This ensures that there are no cycles that contains or t and does
not affect the solution. Givenλ we create a graphGλ that differs fromG only in the arc lengths. The
arc lengths ofGλ , denoted bỳ ′, are set as follows:

`′(s,u) = `(s,u)−λ/2 u∈V \{s, t}
`′(u, t) = `(u, t)−λ/2 u∈V \{s, t}
`′(u,v) = `(u,v)−λ u,v∈V \{s, t}

It is easy to verify that the density of a pathP∈ P(s, t) or a cycleC∈ C(s, t) is at mostλ iff its length in
Gλ is non-positive. Thus we can use the Bellman-Ford algorithm [1] to compute a shortest path inGλ

betweens andt. If the algorithm finds a negative length cycle we output it. Otherwise, if the shortest
path length is non-positive then we obtain a path of density at mostλ . If the shortest path is of positive
length, we obtain a proof of the non-existence of a path inP(s, t) of densityλ .

We remark that the above proof only guarantees a weakly-polynomial time algorithm due to the
binary search forλ ∗. A strongly polynomial time algorithm can be obtained by using aparametric

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 200

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

shortest path algorithm. Our focus is on the approximation ratio and hence we do not go into the details
of this well-understood area and refer the reader to [1, 25].

Given a directed pathP and two verticesu,v∈ P we writeu�P v if u precedesv in P (we assume
thatu precedes itself). Ifu�P v andu 6= v we writeu≺P v. If P is clear from the context we simply
write u� v or u≺ v.

We call a pathP∈ P(s, t) spanningif V(P) = V, otherwise it ispartial. Let P1 andP2 be two paths
in P(s, t). We say thatP2 dominates P1 iff V(P1) ⊂ V(P2). We say thatP2 is anextensionof P1 if P2

dominatesP1 and the vertices inV(P1) are visited in the same sequence inP2 as they are inP1. It is clear
that if P2 extendsP1 then we can obtainP2 by replacing some arcs ofP1 by subpaths ofP2. Let `(P1,P2)
denote thecost of extensionwhich is defined to be∑a∈A(P2)\A(P1) `(a). Note that the cost of extension
does not include the length of arcs inP1.

3 Augmentation Lemma

Our main lemma is the following.

Lemma 3.1. Let G= (V,A, `) satisfy the asymmetric triangle inequality and let P1,P2 in P(s, t) such
that P2 dominates P1. Then there is a path P3 ∈ P(s, t) that dominates P2, extends P1, and satisfies
`(P1,P3)≤ 2`(P2).

We remark that the above lemma only guarantees the existence ofP3 but not a polynomial time
algorithm to find it. Let us introduce some syntactic sugar before plunging into the proof. For a path
P and two verticesu �P v, we useP(u,v) to denote the subpath ofP starting atu and ending atv.
Specifically for the pathP1, we use the following notation: for a vertexu∈ P1\{t}, we denote byu+ the
successor ofu onP1.

Proof. Consider the setX ⊆V(P1) of verticesu with the property thatu≺P2 u+. Note thats∈ X. For
each such vertex, we think of replacing the arc(u,u+) of P1 by the subpathP2(u,u+). Näıvely, we could
replace all arcs(u,u+) by the corresponding subpaths ofP2. Unfortunately this might cause some arcs
of P2 to be used multiple times and thus incur a high cost of extension. To avoid this, we choose only
some of the vertices inX to replace their corresponding arcs. We shallmarka subset of verticesu∈ X
with their corresponding path segmentsP2(u,u+) such that each vertex ofP2 occurs in some marked
path segment at least once, while each arc ofP2 appears in at mosttwomarked segments.

We construct a sequenceg1,g2, . . . of marked vertices iteratively. To start, we letg1 = s be the first
marked vertex. Giveng1, . . . ,gi , we constructgi+1 as follows. Find the last vertexv on the subpath
P1(g+

i , t) such thatv ∈ P2(s,g+
i). Such a vertexv always exists, asg+

i belongs to both path segments.
Note that, by the choice ofv, v+ /∈ P2(s,g+

i), which means that (unlessv = t) v≺P2 v+ and thusv∈ X.
If v 6= t, we letgi+1 = v and continue to the next iteration. Ifv = t, we stop—this happens only when
g+

i = t. Let gl be the last vertex of the constructed sequence. We obtainP3 from P1 by replacing each arc
(gi ,g

+
i) of P1 by the sub-pathP2(gi ,g

+
i). SeeFigure1 for an illustration of the construction. To prove

the lemma, it now suffices to prove the following two statements.

(P1) For every vertexv∈ P2, there is at least one marked segmentP2(gi ,g
+
i) that containsv.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 201

C. CHEKURI AND M. PÁL

s b c h a g e d f i t

P2

P1

s a b c d e f t

P3

s a b c d e tf

P1

s a b c d e f t

with marked vertices shown as squares

Figure 1: Illustration for the augmentation lemma. Each dotted edge edge inP3 corresponds to a sub-path
of P2. Note that any edge ofP2 occurs in at most two dotted sub-paths inP3.

(P2) Every arca∈ P2 belongs to at most two marked segmentsP2(gi ,g
+
i), with i = 1, . . . , l .

These statements in turn follow from the following inequalities:

(I1) For i = 1, . . . , l −1, we havegi ≺P1 gi+1.

(I2) For i = 1, . . . , l −1, we havegi ≺P2 gi+1 �P2 g+
i .

(I3) For i = 1, . . . , l −2, we haveg+
i �P2 gi+2.

In particular, (I2) shows that any two consecutive path segmentsP2(gi ,g
+
i) andP2(gi+1,g

+
i+1) over-

lap. Since the first segment containssand the last segment containst, the union of these segments must
necessarily cover the whole pathP2. Hence (P1) holds. Inequalities (I2) and (I3) imply that two path
segmentsP2(gi ,g

+
i) andP2(g j ,g

+
j) overlap only if|i− j| ≤ 1, and thus each arca∈ P2 can belong to at

most two consecutive segments. This proves (P2).
We finish the proof by showing that (I1)–(I3) hold. (I1) holds by construction, asgi+1 ∈ P1(g+

i , t).
The second part of (I2),gi+1 �P2 g+

i is easily seen to hold as well, sincegi+1 is defined to be the last
vertexv along the pathP1 such thatv�P2 g+

i .
¿From (I1) we know thatgi+2 occurs on the pathP1 later thangi+1, thus it must be thatgi+2 �P2 g+

i
does not hold, and henceg+

i ≺P2 gi+2. This proves inequality (I3).
Finally, we prove the first part of inequality (I2),gi ≺P2 gi+1. Sinceg1 = s, this certainly holds for

i = 1. For contradiction, suppose thatgi+1 �P2 gi for somei > 1. Consider the iteration in whichgi got
marked. Recall that by construction,gi is the last vertex along the pathP1 that belongs toP2(s,g+

i−1). But
then, fromgi+1 �P2 gi andgi �P2 g+

i−1 it follows thatgi+1 �P2 g+
i−1, and hencegi+1 ∈ P2(s,gi−1). This is

a contradiction, because by (I1),gi+1 occurs onP1 later thangi .

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 202

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

We obtain the following useful corollary.

Corllary 3.2. For any P∈ P(s, t) there is a spanning path P′ ∈ P(s, t) such that̀ (P,P′) ≤ 2 ·OPT and
P′ extends P.

Proof. In Lemma 3.1, we letP1 = P and we chooseP2 to be some fixed optimal spanning path. The path
P3 guaranteed by the lemma is the desiredP′.

4 Algorithm for ATSPP

Our algorithm for ATSPP works in a greedy fashion, choosing a best ratio augmentation in every step
similar in spirit to that in [18]. The approximation ratio follows from the same arguments as in the
analysis of the greedy algorithm for set cover [11].

At any point in time, the algorithm maintains ans-t pathP, whereP= (s= p0, p1, . . . , pk = t), and a
list C of vertex disjoint cyclesC1, . . . ,Cl . The cycles are at all times disjoint fromP and together withP
partition the vertex setV. From each cycleCi , we pick a vertexci as a proxy for that cycle. Initially, the
pathP consists of a single arcs-t, and every vertexv∈V \ {s, t} is considered a separate (degenerate)
cycle. (Thus initially, each vertex will be its own cycle’s proxy.)

In each iteration, we seek to decrease the number of components by performing apath or cycle
augmentation. In a path augmentation step, we pick a pathπ that starts at some vertexpi 6= t on
the pathP, visits one or more cycle proxy vertices, and ends atpi+1, the successor ofpi on P. Let
R(π) = ci1,ci2, . . . ,cim be the set of proxy vertices visited byπ. Consider the union of the pathπ and the
cycles{Ci}ci∈R(π). In this graph, the in-degree of every vertex equals its out-degree, except forpi and
pi+1. Thus, it is possible to construct an Eulerian walk frompi to pi+1 that visits all arcs (and hence
all vertices) of

⋃
ci∈R(π)Ci . Using triangle inequality and short-cutting, we convert the walk into a path

π ′ that visits every vertex only once without increasing its cost. We then extendP by replacing the arc
(pi , pi+1) by the pathπ ′. Finally, we remove all cycles inR(π) from C.

The cycle augmentation step is very similar. We pick a non-degenerate cycleC on proxy vertices
(that is, it contains two or more proxy vertices). We letR(C) be the set of proxy vertices visited byC,
and consider the graphC∪

⋃
ci∈R(C)Ci . This graph is Eulerian: by following an Eulerian tour of it and

short-cutting, we obtain a cycleC′ visiting every vertex of
⋃

ci∈R(C)Ci . We addC′ to the listC (we pick
a proxy forC′ arbitrarily). Again, we remove all cycles inR(C) from the listC.

In each iteration, we pick either a path or a cycle with minimum density. In the following, we useπ

to refer to either an augmenting path or augmenting cycle. For the purposes of this algorithm, we define
the density of a path or cycleπ to bed(π) = `(π)/|R(π)| the ratio of the length ofπ to the number of
proxy vertices covered byπ. Note that although we consider only proxy vertices in the above definition
of density, we can still useLemma 2.1to find, in polynomial time, an augmenting path of minimum
densityλ ∗, or find an augmenting cycle with density no greater thanλ ∗.

Each augmenting path or cycle iteration reduces the size of the listC, and hence it takes at most
|V|−2 iterations to exhaust it. At this point, all outstanding cycles must have been included inP, and
henceP is a spanning path. We outputP and stop.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 203

C. CHEKURI AND M. PÁL

4.1 Bounding the cost

We now turn to bounding the cost of the resulting path. To do this, we observe the quantityL = `(P)+
∑c∈C `(C). Initially, L = `(s, t) ≤ OPT. Note that in every augmentation step,L increases by at most
`(π), whereπ is the current augmenting path or cycle. Hence, it is enough to bound the lengths of the
augmenting paths and cycles.

Claim 4.1. In every iteration, ifπ is the augmenting path or cycle in that iteration,

`(π)≤ |R(π)|
|C|

·2·OPT.

Proof. Let P∗ be a minimum lengths-t path that visits all proxy vertices of cycles inC. One such path
can be obtained by short-cutting an optimum ATSPP path inG, hencè (P∗)≤ OPT. Lemma 3.1states
that the pathP can be extended to a pathP3 such thatR(C)⊆ P3 and the cost of the extension is at most
2`(P∗) ≤ 2 ·OPT. The extension covers|C| proxy vertices, and hence has density at most 2·OPT/|C|.
The subpaths of this extension are also valid augmentation paths, and one of them must have density
no greater than the density of the whole extension. Thus, there is an augmenting path with density
2·OPT/|C|; the density of the best path or cycle can only be lower.

Lemma 4.2. The overall cost of the path output by the algorithm is at mostmax(4Hn−2,1) ·OPT.

Proof. At any given stage of the algorithm, letk = |C| be the number of components left. We claim
that the cost of reducingk by one is at most 4·OPT/k. Assuming the claim and summing overk =
1, . . . , |V| −2 yields an upper bound of 4·Hn−2 ·OPT on the total cost of the augmentation steps. We
also have to account for the arc(s, t) included in the initialization phase; note that ifn≥ 3, this arc will
be removed during the execution of the algorithm and hence does not contribute to the final cost. It is
easy to verify that forn = 2, our algorithm finds an optimal solution.

To prove the claim, consider any fixed value ofk and consider the augmentation step in which the
value of |C| drops from somek1 ≥ k to k2 < k. The augmentation step was either a path step or a
cycle step. In a path step,k1− k2 cycles are removed at cost 2·OPT(k1− k2)/k1, i. e., 2·OPT/k1 ≤
2 ·OPT/k per cycle. In a cycle step,k1− k2 + 1 cycles are removed and one cycle is added, at cost
2·OPT(k1−k2 +1)/k1. The amortized cost per cycle is thus

2· OPT

k1
· k1−k2 +1

k1−k2
.

Since in a cycle step,k1−k2 ≥ 1, the amortized cost per cycle is at most 4·OPT/k1.

We briefly discuss the running time of the algorithm. The number of augmenting iterations is, in
the worst case, linear inn. In each iteration we need to find a parametric shortest path between every
adjacent pair of vertices in the current partial path. Thus, in the worst case the algorithm requiresΘ(n2)
parametric shortest path computations. Each parametric shortest path computation can be implemented
in O(nm+ n2 logn) time in a graph withn vertices andm arcs [25]. One way to simplify the imple-
mentation is to use the transitive closure of the original graph: an arc(u,v) in the trantive closure has
length equal to the shortest path fromu to v in the original graph. A simple upper bound on the number

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 204

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

of arcs in the closure isn2. Thus a parametric shortest path computation takesO(n3) time. Putting
together these bounds gives a total running time ofO(n5) steps. The running time can be improved at
the expense of a (slightly) worse approximation guarantee. In particular the density computation for the
augmentation in each iteration can be approximate.

4.2 Path-constrained ATSPP

Our algorithm for ATSPP generalizes to the path-constrained version in a straight forward fashion.
Recall that we are given a sequence of verticess= v1,v2, . . . ,vk = t and seek a minimum length spanning
path inP(s, t) that visitsv1,v2, . . . ,vk in order. The only change from the algorithm for ATSPP is in the
initialization step. Instead of starting with a path consisting of the arc(s, t) we start with a pathP
consisting of the arcs(v1,v2),(v2,v3), . . . ,(vk−1,vk). Note that the length of this path is a lower bound
on the length of an optimum path. The algorithm simply augments this path to a spanning path in exactly
the same way as for ATSPP. The analysis is essentially the same as for ATSPP.

5 Conclusions

Our investigation of ATSPP was primarily motivated by the orienteering problem and related ones such
as thek-TSP andk-stroll problems. Orienteering in directed graphs is the following problem: given a
directed graphG = (V,A) and two nodess, t and a budgetB, find ans-t walk of total length at most
B that maximizes the number of distinct vertices on the walk. In thek-stroll problem the goal is to
find ans-t walk of minimum length that contains at leastk nodes. The (rooted)k-TSP problem is the
k-stroll problem withs= t; the goal is a tour of minimum length that containss and contains at least
k nodes. These problems are closely connected and are motivated by applications in vehicle routing
and others [5, 3, 22]. The work in [5, 3] established connections between approximability of some
of the above problems and obtained approximation algorithms of orienteering in undirected graphs.
More recently, independent work in [8, 21] established poly-logarithmic approximations for orienteering
in directed graphs—earlier a poly-logarithmic approximation was achieved only in quasi-polynomial
time [9]. However, for all the above mentioned problems on directed graphs, including the classical
ATSP, only APX-hardness is known while the best approximation bounds known are poly-logarithmic.
Closing these gaps are challenging open problems. We mention two concrete open problems in the
context of ATSPP.

A natural linear programming relaxation can be written for the problem, as given below. For a set
S⊂V of vertices, we letδ−(S) andδ+(S) denote the set of arcs entering and leavingS, respectively.

For each arca∈ A there is a variablex(a) which indicates whethera is in the solution or not. The
constraints ask for at least one arc to leave each set that does not containt, and for at least one arc to
enter each set not containings. Further, the constraints force exactly one arc to enter each node inV \{s}
and force exactly one arc to leave each node inV \{t}.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 205

C. CHEKURI AND M. PÁL

min ∑
a∈A

`(a)x(a)

∑
a∈δ−(v)

x(a) = 1 v∈V \{s}

∑
a∈δ+(v)

x(a) = 1 v∈V \{t}

∑
a∈δ−(S)

x(a) ≥ 1 S⊆V \{s}

∑
a∈δ+(S)

x(a) ≥ 1 S⊆V \{t}

x(a) ≥ 0 a∈ A.

The relaxation above is similar to the one for ATSP. Williamson [23] showed that the relaxation
of ATSP has an integrality gap ofO(logn) by adapting the proof of [13]; in contrast, the best lower
bound on the integrality gap is 2 [6]. An open question is whether the above relaxation for ATSPP has
an integrality gap ofO(logn). The augmentation lemma (Lemma 3.1) is based on a comparison to an
optimum integral solution and it is not clear whether one can prove a similar lemma with respect to the
value of an optimum solution to the linear program.

Another open question is to obtain a non-trivial approximation algorithm for thek-stroll problem.
Note that ATSPP is a special case ofk-stroll wherek = n. The results in [8, 21] yield bi-criteria
algorithms that find ans-t walk of lengthO(OPT) that visitsΩ(k/ log2k) nodes.

Acknowledgments: We thank Fumei Lam for an enlightening conversation, for sending us a copy of
the manuscript [19] and for pointing out [2]. We thank Moses Charikar for pointing out [18]. This work
was mostly done while the authors were at Lucent Bell Labs. Chandra Chekuri acknowledges support
from an ONR basic research grant N00014-05-1-0256 to Lucent Bell Labs.

References

[1] * RAVINDRA K. A HUJA, THOMAS L. M AGNANTI , AND JAMES B. ORLIN: Network Flows.
Prentice Hall, 1993.1, 2

[2] * ABRAHAM BACHRACH, KEVIN CHEN, CHRIS HARRELSON, RADU M IHAESCU, SATISH

RAO, AND APURVA SHAH: Lower bounds for maximum parsimony with gene order data. In
Proc. 3rd RECOMB Satellite Workshop on Comparative Genomics (RCG’05), LNCS, pp. 1–10.
Springer, 2005. [Springer:761n756g03752l46]. 1, 5

[3] * NIKHIL BANSAL , AVRIM BLUM , SHUCHI CHAWLA , AND ADAM MEYERSON: Approximation
algorithms for deadline-TSP and vehicle routing with time-windows. InProc. 36th STOC, pp. 166–
174. ACM Press, 2004. [STOC:10.1145/1007352.1007385]. 5

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 206

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#networkflowbook
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#BachrachCHMRS05
http://springerlink.metapress.com/link.asp?id=761n756g03752l46
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Bansaletal
http://doi.acm.org/10.1145/1007352.1007385

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

[4] * MARCUS BLÄSER: A new approximation algorithm for the asymmetric TSP with triangle in-
equality. InProc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 638–645.
SIAM, 2002. [SODA:644213]. 1

[5] * AVRIM BLUM , SHUCHI CHAWLA , DAVID KARGER, TERRAN LANE, ADAM MEYERSON,
AND MARIA M INKOFF: Approximation algorithms for orienteering and discounted-reward TSP.
SIAM Journal on Computing, 37:653–670, 2007. [SICOMP:10.1137/050645464]. 5

[6] * MOSES CHARIKAR , M ICHEL GOEMANS, AND HOWARD KARLOFF: On the integrality ra-
tio for asymmetric TSP. InProc. 45th FOCS, pp. 101–107. IEEE Computer Society, 2004.
[FOCS:10.1109/FOCS.2004.45]. 1, 5

[7] * MOSES CHARIKAR , RAJEEV MOTWANI , PRABHAKAR RAGHAVAN , AND CRAIG SILVER-
STEIN: Constrained TSP and lower power computing. InProc. First Workshop on Algorithms and
Data Structures (WADS’97), pp. 104–115, 1997. [WADS:d5764136r2147633]. 1, 1

[8] * CHANDRA CHEKURI, NITISH KORULA, AND MARTIN PÁL : Improved algorithms for ori-
enteering and related problems. InProc. 19th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA’08). SIAM, 2008. To appear.5

[9] * CHANDRA CHEKURI AND MARTIN PÁL : A recursive greedy algorithm for walks in
directed graphs. InProc. 46th FOCS, pp. 245–253. IEEE Computer Society, 2005.
[FOCS:10.1109/SFCS.2005.9]. 5

[10] * NICOS CHRISTOFIDES: Worst-case analysis of a new heuristic for the traveling salesman prob-
lem. Technical report, CMU, 1976.1

[11] * VAŠEK CHVÁTAL : A greedy heuristic for the set-covering problem.Mathematics of Operations
Research, 4:233–235, 1979.1, 4

[12] * URIEL FEIGE AND MOHIT SINGH: Improved approximation ratios for traveling salesperson
tours and paths in directed graphs. InProc. 10th Internat. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX’07), volume 4627 ofLNCS, pp. 104–118.
Springer, 2007. [Springer:u201633r5096547w]. 1

[13] * ALAN FRIEZE, G. GALBIATI , AND M. M AFFIOLI: On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem.Networks, 12:23–39, 1982.
[doi:10.1002/net.3230120103]. 1, 1, 5

[14] * G. GUTIN AND A.P. PUNNEN, editors. Traveling Salesman Problem and Its Variations.
Springer-Verlag, Berlin, 2002.1

[15] * N. GUTTMANN -BECK, R. HASSIN, S. KHULLER, AND B. RAGHAVACHARI : Approximation
algorithms with bounded performance guarantees for the clustered traveling salesman problem.
Algorithmica, 28:422–437, 2000. Preliminary version inProc. of FSTTCS, 1998. [Algorith-
mica:38vtl0dhpg55l0au]. 1

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 207

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Blaser02
http://portal.acm.org/citation.cfm?id=644213
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Blumetal
http://dx.doi.org/10.1137/050645464
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#CharikarGK04
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.45
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#CharikarMRS97
http://springerlink.metapress.com/link.asp?id=d5764136r2147633
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#ChekuriKP07
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#ChekuriP05
http://doi.ieeecomputersociety.org//10.1109/SFCS.2005.9
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Christofides76
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Chvatal79
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#FeigeS07
http://springerlink.metapress.com/link.asp?id=u201633r5096547w
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#FriezeGM82
http://dx.doi.org/10.1002/net.3230120103
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#TSP_book2
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#GHKR98
http://springerlink.metapress.com/link.asp?id=38vtl0dhpg55l0au
http://springerlink.metapress.com/link.asp?id=38vtl0dhpg55l0au

C. CHEKURI AND M. PÁL

[16] * J. HOOGEVEEN: Analysis of Christofides’ heuristic: Some paths are more difficult than cycles.
Operations Research Letters, 10(5):291–295, 1991. [Elsevier:10.1016/0167-6377(91)90016-I]. 1

[17] * H. KAPLAN , M. LEWENSTEIN, N. SHAFIR, AND M. SVIRIDENKO: Approximation algorithms
for asymmetric TSP by decomposing directed regular multidigraphs.Journal of the ACM, 52:602–
626, 2005. [JACM:10.1145/1082036.1082041]. 1

[18] * JON KLEINBERG AND DAVID WILLIAMSON : Unpublished note. 1998.1, 4, 5

[19] * FUMEI LAM AND ALANTHA NEWMAN: Traveling salesman path problems.Mathematical
Programming A, 2006. Online publication date 1 Nov 2006. [Springer:7773743425mx673l]. 1, 5

[20] * E. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN , AND D. SHMOYS, editors.The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons Ltd.,
1985. 1

[21] * V. NAGARAJAN AND R. RAVI : Poly-logarithmic approximation algorithms for directed vehicle
routing problems. InProc. 10th Internat. Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX’07), volume 4627 ofLNCS, pp. 257–270. Springer, 2007.
[Springer:vn2516l2l015u7u1]. 5

[22] * P. TOTH AND D. V IGO, editors.The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications. SIAM, Philadelphia, 2002.5

[23] * DAVID WILLIAMSON : Analysis of the held-karp heuristic for the traveling salesman problem.
Master’s thesis, MIT Computer Science Department, 1990.5

[24] * DAVID WILLIAMSON : Lecture notes on approximation algorithms. Technical Report RC 21273,
IBM, February 1999.1

[25] * N. YOUNG, R. TARJAN, AND J. ORLIN: Faster parametric shortest path and minimum balance
algorithms. Networks, 21(2):205–221, 1991. [doi:10.1002/net.3230210206, arXiv:cs/0205041].
2, 4.1

AUTHORS

Chandra Chekuri[About the author]
Dept. of Computer Science
201 N. Goodwin Ave.
University of Illinois
Urbana, IL 61801
chekuri csuiuc edu
http://www.cs.uiuc.edu/homes/chekuri

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 208

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Hoogeveen91
http://dx.doi.org/10.1016/0167-6377(91)90016-I
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#KaplanLSS03
http://doi.acm.org/10.1145/1082036.1082041
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#KleinbergW98
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#LamN05
http://springerlink.metapress.com/link.asp?id=7773743425mx673l
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#TSP_book1
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#NagarajanR07
http://springerlink.metapress.com/link.asp?id=vn2516l2l015u7u1
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#vehicle_book
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Williamson90
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Williamson99
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#YoungTO91
http://dx.doi.org/10.1002/net.3230210206
http://arxiv.org/abs/cs/0205041
http://www.cs.uiuc.edu/homes/chekuri

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

Martin Ṕal [About the author]
Google Inc.
76 Ninth Avenue
New York, NY 10011
mpal googlecom
http://martin.palenica.com

ABOUT THE AUTHORS

CHANDRA CHEKURI is an Associate Professor of Computer Science at the University of
Illinois at Urbana-Champaign (UIUC). He moved to UIUC in the fall of 2006 after
spending eight years at Lucent Bell Labs. He finished his Ph. D in Computer Science
at Stanford University under the supervision of Rajeev Motwani in 1998. Before that
he obtained his B. Tech degree in Computer Science and Engineering from the Indian
Institute of Technology, Madras (now Chennai). He is primarily interested in algorithms
for discrete optimization problems with current research focusing on approximation
algorithms.

MARTIN PÁL is a Software Engineer at Google, Inc., where he enjoys designing algorithms
for internet advertising markets. Before joining the company that does no evil, he spent
four lovely years at Cornell University pursuing a Ph. D in Computer Science under the
supervision of́Eva Tardos, followed by a year as a postdoc at DIMACS and Bell Labs.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 197–209 209

http://martin.palenica.com

	Introduction
	Preliminaries
	Augmentation Lemma
	Algorithm for ATSPP
	Bounding the cost
	Path-constrained ATSPP

	Conclusions
	References

