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1 Introduction

If someone hands you a quantum state, is that more “useful” than being handed a classical string with a
comparable number of bits? In particular, are there truths that you can efficiently verify, and are there
problems that you can efficiently solve, using the quantum state but not using the string? These are the
questions that this paper addresses, and that it answers in several contexts.

Recall thatQMA, or Quantum Merlin-Arthur, is the class of decision problems for which a “yes”
answer can be verified in quantum polynomial time, with help from a polynomial-size quantum wit-
ness state|ψ〉. Many results are known aboutQMA: for example, it has natural complete promise
problems [19], allows amplification of success probabilities [22], and is contained inPP [22]. Raz and
Shpilka [27] have also studied communication complexity variants ofQMA.

Yet, as Aharonov and Naveh [3] pointed out in 2002, the very definition ofQMA raises a fundamental
question. Namely: is it really essential that the witness be quantum, or does it suffice for the algorithm
verifying the witness to be quantum? To address this question, Aharonov and Naveh defined the class
QCMA, or “Quantum Classical Merlin-Arthur,” to be the same asQMA except that now the witness is
classical.1 We can then ask whetherQMA = QCMA. Not surprisingly, the answer is that we don’t know.

If we can’t decide whether two complexity classes are equal, the usual next step is to construct a
relativized world that separates them. This would provide at least some evidence that the classes are
different. But in the case ofQMA versusQCMA, even this limited goal has remained elusive.

Closely related to the question of quantum versus classical proofs is that of quantum versus classical
advice. Compared to a proof, advice has the advantage that it can be trusted, but the disadvantage that it
can’t be tailored to a particular input. More formally, letBQP/qpoly be the class of problems solvable in
quantum polynomial time, with help from a polynomial-size “quantum advice state”|ψn〉 that depends
only on the input lengthn. Then the question is whetherBQP/qpoly = BQP/poly, whereBQP/poly
is the class of problems solvable in quantum polynomial time with help from polynomial-sizeclassical
advice. Aaronson [2] showed thatBQP/qpoly ⊆ PP/poly, which at least tells us that quantum advice
is not “infinitely” more powerful than classical advice. But, like theQMA versusQCMA question, the
BQP/qpoly versusBQP/poly question has remained open, with not even an oracle separation known.

1.1 Our results

This paper introduces new tools with which to attackQMA versusQCMA and related questions.
First, we achieve an oracle separation betweenQMA andQCMA, but only by broadening the defi-

nition of “oracle.” In particular, we introduce the notion of aquantum oracle, which is just an infinite
sequence of unitariesU = {Un}n≥1 that a quantum algorithm can apply in a black-box fashion. Just as
a classical oracle models a subroutine to which an algorithm has black-box access, so a quantum oracle
models a quantum subroutine, which can take quantum input and produce quantum output. We are able
to give a quantum oracle that separatesQMA from QCMA:

Theorem 1.1. There exists a quantum oracle U such thatQMAU 6= QCMAU .

1Some say that this class would more accurately be calledCMQA, for “Classical Merlin Quantum Arthur.” ButQCMA
has stuck.
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Similarly, there exists a quantum oracleV such thatBQPV/qpoly 6= BQPV/poly.
Theorem1.1 implies that ifQMA = QCMA, then any proof of this fact will require “quantumly

nonrelativizing techniques”: techniques that are sensitive to the presence of quantum oracles. Currently,
we do not know ofanyquantumly nonrelativizing techniques that are not also classically nonrelativizing.
For this reason, we believe that quantum oracle separations merit the same informal interpretation as
classical oracle separations: almost any argument that one might advance against the former, is also an
argument against the latter! The difference is that quantum oracle results are sometimes much easier to
prove than classical ones. To our knowledge, this paper provides the first example of this phenomenon,
but other examples have since emerged [1, 24].

It might be objected that, even if quantum oracle separations are no less trustworthy than classical
ones, they certainly aren’tmoretrustworthy, and complexity theorists have known since the celebrated
IP = PSPACE theorem [28] that oracle results sometimes “point in the wrong direction.” We wish to
stress two points in response. First, oracle results provide at leastsomeunderstanding, thereby opening
the way to further progress. This is particularly true in quantum computing, where even the oracle
results tend to be much less intuitively obvious than they are in the classical world. Second, complexity
theorists do not currently have any nonrelativizing technique for “non-interactive” classes such asQMA
andQCMA even remotely analogous to the arithmetization technique that Shamir [28] used to show
IP = PSPACE. We hope such a technique will someday be discovered.

UnderlyingTheorem1.1is the following lower bound. Suppose a unitary oracleUn acts onn qubits,
and suppose that either (i)Un is the identity, or (ii) there exists a secretn-qubit “marked state”|ψn〉 such
thatUn |ψn〉 = −|ψn〉, but Un |ϕ〉 = |ϕ〉 whenever|ϕ〉 is orthogonal to|ψn〉. Then even if a quantum
algorithm is givenm bits of classical advice about|ψn〉, the algorithm still needsΩ

(√
2n/(m+1)

)
queries toUn to distinguish these cases. Note that whenm = 0, we recover the usualΩ

(√
2n
)

lower
bound for Grover search as a special case. At the other extreme, ifm≈2n then our bound gives nothing—
not surprisingly, since the classical advice might contain explicit instructions for preparing|ψn〉. The
point is that, ifm is not exponentially large, then exponentially many queries are needed.

Since|ψn〉 is an arbitrary 2n-dimensional unit vector, it might be thought obvious that 2Ω(n) bits are
needed to describe that vector. The key point, however, is that theQCMA verifier is given not only a
classical description of|ψn〉, but also oracle access toUn. So the question is whether somecombination
of these resources might be exponentially more powerful than either one alone. We prove that the answer
is no, using the hybrid argument of Bennett et al. [10] together with geometric results about partitionings
of the unit sphere.

In Section4, we show that our lower bound is basically tight, by giving an algorithm that finds|ψn〉
usingO

(√
2n/m

)
queries whenm≥ 2n. This algorithm has the drawback of beingcomputationally

inefficient. To fix this, we give another algorithm that finds|ψn〉 usingO
(
n
√

2n/m
)

queries together
with O

(
n2
√

2n/m+poly(m)
)

computational steps.
Having separatedQMA from QCMA by a quantum oracle, we next revisit the question of whether

these classes can be separated by aclassicaloracle. Right now, we know of only one candidate problem
for such a separation in the literature: the Group Non-Membership (GNM) problem, which Watrous [31]
placed inQMA even though Babai [5] showed it is not inMA as an oracle problem.2 In Group Non-
Membership, Arthur is given black-box access to a finite groupG, together with a subgroupH ≤ G

2Interestingly, the classesMA andAM were originally defined by Babai in connection with GNM [4].
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specified by its generators and an elementx∈ G. Arthur’s goal is to verify thatx /∈ H, using a number
of group operations polynomial in log|G|. (Note that the groupmembershipproblem is inNP by a
result of Babai and Szemerédi [8].) In Watrous’s protocol, the quantum witness is simply an equal
superposition|H〉 over the elements ofH. Given such a witness, Arthur can check non-membership by
comparing the states|H〉 and|xH〉, and can similarly check the veracity of|H〉 by comparing it to|hH〉,
whereh is an almost-uniformly random element ofH.

Evidently a classical proof of non-membership would have to be completely different. Nevertheless,
in Section5 we show the following:

Theorem 1.2. GNM has polynomially-boundedQCMA query complexity.

Theorem1.2 implies that it is pointless to try to prove a classical oracle separation betweenQMA
andQCMA by proving a lower bound on the quantum query complexity of Group Non-Membership. If
such a separation is possible, then a new approach will be needed.

The idea of the proof ofTheorem1.2 is that Merlin can “pull the group out of the black box.” In
other words, he can claim an embedding of a model groupΓ into G. This claim is entirely classical,
but verifying it requires solving the Normal Hidden Subgroup Problem (NHSP) inΓ. This problem has
low query complexity by a result of Ettinger, Høyer, and Knill [14], but is not known to be inBQP. In
addition, analyzing the description ofΓ is not known to be computationally efficient. Nonetheless, in
Section5.1we discuss evidence that NHSP is inBQP and that non-membership forΓ is in NP. Based
on this evidence, we conjecture the following:

Conjecture 1.3. GNM is in QCMA.

Given our results inSection5, the question remains of whether there is some other way to prove a
classical oracle separation betweenQMA andQCMA. In Section6, we conjecture that the answer is
yes:

Conjecture 1.4. There exists a classical oracleA such thatQMAA 6= QCMAA. Furthermore, this can
be proven by exhibiting an oracle problem with polynomialQMA query complexity but exponential
QCMA query complexity.

The reason we believeConjecture1.4 is that it seems possible, for many purposes, to “encode” a
quantum oracle into a classical one. InSection6 we explain more concretely what we mean by that, and
present some preliminary results. For example, we show that there exists aBQP algorithm that maps
an oracle stringA to ann-qubit pure state|ψA〉, such that ifA is uniformly random, then|ψA〉 is (under
a suitable metric) close to uniformly random under the Haar measure. We also study the question of
applying a randomN×N unitary matrix using a random classical oracle in the same way. We do not
know how to do this, but we show that one quantum query will not suffice for this purpose. To prove
this, we show that a quantum algorithm that uses just one query can apply at most 4N differentN×N
unitaries, whereas the number of unitaries required to approximate the uniform distribution grows like

2Θ(N2).
We end inSection7 with some open problems.
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2 Preliminaries

Throughout this paper, we refer to the set ofN-dimensional pure states asCPN−1 (that is, complex
projective space withN−1 dimensions). We use Pr to denote probability, and E to denote expectation.

We assume familiarity with standard complexity classes such asBQP andMA. For completeness,
we now defineQMA, QCMA, BQP/qpoly, andBQP/poly.

Definition 2.1. QMA is the class of languagesL ⊆ {0,1}n for which there exists a polynomial-time
quantum verifierQ and a polynomialp such that, for allx∈ {0,1}n:

(i) If x∈ L then there exists ap(n)-qubit quantum proof|ϕ〉 such thatQ accepts with probability at
least 2/3 given|x〉 |ϕ〉 as input.

(ii) If x /∈ L thenQ accepts with probability at most 1/3 given|x〉 |ϕ〉 as input, for all purported proofs
|ϕ〉.

The classQCMA is defined similarly, except that|ϕ〉 is replaced by a classical stringz∈ {0,1}p(n).

Definition 2.2. BQP/qpoly is the class of languagesL ⊆ {0,1}n for which there exists a polynomial-
time quantum algorithmQ, together with a set of states{|ψn〉}n≥1 (where|ψn〉 has sizep(n) for some
polynomialp), such that for allx∈ {0,1}n:

(i) If x∈ L thenQ accepts with probability at least 2/3 given|x〉 |ψn〉 as input.

(ii) If x /∈ L thenQ accepts with probability at most 1/3 given|x〉 |ψn〉 as input.

The classBQP/poly is defined similarly, except that|ψn〉 is replaced by a classical stringan ∈
{0,1}p(n).

Let us now explain what we mean by a “quantum oracle.” For us, a quantum oracle is simply an
infinite sequence of unitary transformations,U = {Un}n≥1. We assume that eachUn acts onp(n) qubits
for some known polynomialp. We also assume that given ann-bit string as input, a quantum algorithm
calls onlyUn, notUm for anym 6= n. This assumption is only made for simplicity; our results would go
through without it.3 When there is no danger of confusion, we will refer toUn simply asU .

Formally, the oracle access mechanism is as follows. Assume a quantum computer’s state has the
form

|Φ〉= ∑
z

αz|z〉 |φz〉 ,

where|z〉 is a workspace register and|φb,z〉 is a p(n)-qubit answer register. Then to “queryUn” means
to apply thep(n)-qubit unitary transformation that maps|Φ〉 to∣∣Φ′〉= ∑

z
αz|z〉Un |φz〉 .

3If one made the analogous assumption inclassicalcomplexity—that given an input of lengthn, an algorithm can query
the oracle only on strings of lengthn—one could simplify a great many oracle results without any loss of conceptual content.
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Let C be a quantum complexity class, and letU = {Un}n≥1 be a quantum oracle. Then byCU , we will
mean the class of problems solvable by aC machine that, given an input of lengthn, can queryUn at
unit cost as many times as it likes.

In defining the notion of quantum oracle, at least two choices present themselves that have no coun-
terpart for classical oracles:

(1) If we can apply a quantum oracleU , then can we also apply controlled-U (that is,U conditioned
on a control qubit|b〉)?

(2) If we can applyU , then can we also applyU−1?

At least for the present paper, the answers to these questions will not matter, for the following
reasons. First, all of the quantum oraclesU that we consider will be self-inverse (that is,U = U−1).
Second, while our algorithmswill need to apply controlled-U , that is only for the technical reason that
we will defineU so thatU |ψ〉=−|ψ〉 if |ψ〉 is the marked state, andU |ϕ〉= |ϕ〉 whenever〈ϕ|ψ〉= 0.
If we stipulated instead thatU |ψ〉 |b〉= |ψ〉 |b⊕1〉 andU |ϕ〉 |b〉= |ϕ〉 |b〉 whenever〈ϕ|ψ〉= 0, thenU
alone would suffice.

Yet even though these choices will not matter for our results, it still seems worthwhile to discuss
them a bit, since they might arise in future work involving quantum oracles.

One could argue that (i) the purpose of an oracle is to model asubroutinethat an algorithm can call
without understanding its internal structure, and that (ii) given a quantum circuit for applying some uni-
tary operationU , one can easily produce a circuit for applying controlled-U orU−1, without understand-
ing anything about the original circuit’s structure. In particular, to produce a circuit for controlled-U , one
simply conditions each gate on the control qubit; while to produce a circuit forU−1, one simply inverts
all the gates and reverses their order. These considerations suggest that the answers to questions (1) and
(2) should both be ‘yes.’ On the other hand, it would still be interesting to know whether disallowing
controlled-U or U−1 would let us prove more quantum oracle separations. (Note that if we disallow
these operations, then the set of inequivalent quantum oracles becomeslarger.)

3 Quantum oracle separations

The aim of this section is to proveTheorem1.1: that there exists a quantum oracleU such thatQMAU 6=
QCMAU . The same ideas will also yield a quantum oracleV such thatBQPV/qpoly 6= BQPV/poly.

To prove these oracle separations, we first need a geometric lemma about probability measures on
quantum states. Letµ be the uniform probability measure overN-dimensional pure states (that is, over
CPN−1). The following notion will play a key role in our argument.

Definition 3.1. For all p∈ [0,1], a probability measureσ overCPN−1 is calledp-uniform if pσ ≤ µ.
Equivalently,σ is p-uniform if it can be obtained by starting fromµ, and then conditioning on an event
that occurs with probability at leastp.

So for example, we obtain ap-uniform measure if we start fromµ and then condition on log21/p
bits of classical information about|ψ〉. Our geometric lemma says that if|ψ〉 is drawn from ap-uniform
measure, then for every mixed stateρ, the squared fidelity between|ψ〉 andρ has small expectation.
More precisely:
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Lemma 3.2. Let σ be a p-uniform probability measure overCPN−1. Then for allρ,

E
|ψ〉∈σ

[〈ψ|ρ|ψ〉] = O

(
1+ log1/p

N

)
.

The proof ofLemma3.2 is deferred toSection3.1. In this section we assume the lemma, and
show how to use it to prove our main result. In particular, we show that any quantum algorithm needs
Ω
(√

2n/(m+1)
)

queries to find ann-qubit marked state|ψ〉, even if givenm bits of classical advice
about|ψ〉.

Theorem 3.3. Suppose we are given oracle access to an n-qubit unitary U, and want to decide which of
the following holds:

(i) There exists an n-qubit “quantum marked state”|ψ〉 such that U|ψ〉 = −|ψ〉, but U|φ〉 = |φ〉
whenever〈φ |ψ〉= 0; or

(ii) U = I is the identity operator.

Then even if we have an m-bit classical witness w in support of case (i), we still needΩ
(√

2n

m+1

)
queries to verify the witness, with bounded probability of error.

Proof. If m = Ω(2n) then the theorem is certainly true, so supposem = o(2n). Let A be a quantum
algorithm that queriesU . Also, letUψ be ann-qubit unitary such thatUψ |ψ〉=−|ψ〉, butUψ |φ〉= |φ〉
whenever〈φ |ψ〉= 0. ThenA’s goal is to accept if and only ifU = Uψ for some|ψ〉.

For eachn-qubit pure state|ψ〉, let us fix a classical witnessw∈ {0,1}m that maximizes the proba-
bility that A accepts, givenUψ as oracle. LetS(w) be the set of|ψ〉’s associated with a given witnessw.
Since theS(w)’s form a partition ofCP2n−1, clearly there exists a witness, call itw∗, such that

Pr
|ψ〉∈µ

[|ψ〉 ∈ S(w∗)]≥ 1
2m .

Fix thatw∗ (or in other words, hardwirew∗ into A). Then to prove the theorem, it suffices to establish the
following claim: A cannot distinguish the caseU =Uψ from the caseU = I by makingo

(√
2n/(m+1)

)
queries toU , with high probability if|ψ〉 is chosen uniformly at random fromS(w∗).

To prove the claim, we use a generalization of the hybrid argument of Bennett et al. [10]. Suppose
thatA makesT queries toU . (Technically speaking, we should also allow queries to controlled-U , but
this will make no difference in our analysis.) Then for all 0≤ t ≤ T, let |Φt〉 be the final state ofA,
assuming thatU = I for the firstt queries, andU = Uψ for the remainingT − t queries. Thus|Φ0〉 is
the final state in case (i), while|ΦT〉 is the final state in case (ii). We will argue that|Φt〉 cannot be very
far from |Φt−1〉, with high probability over the choice of marked state|ψ〉. Intuitively, this is because
the computations of|Φt〉 and|Φt−1〉 differ in only a single query, and with high probability that query
cannot have much overlap with|ψ〉. We will then conclude, by the triangle inequality, that|Φ0〉 cannot
be far from|ΦT〉 unlessT is large.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 129–157 135



S. AARONSON AND G. KUPERBERG

More formally, letρt be the marginal state of the query register just before thetth query, assuming
the “control case”U = I . Also, letρt = ∑ pi |ϕi〉〈ϕi | be an arbitrary decomposition ofρt into pure states.
Then for everyi, the component of|ϕi〉 orthogonal to|ψ〉 is unaffected by thetth query. Therefore

‖|Φt〉− |Φt−1〉‖2 ≤∑
i

pi ·2|〈ϕi |ψ〉|= 2∑
i

pi

√
〈ψ|ϕi〉〈ϕi |ψ〉

≤ 2
√

∑
i

pi 〈ψ|ϕi〉〈ϕi |ψ〉= 2
√
〈ψ|ρt |ψ〉 ,

where the third line uses the Cauchy-Schwarz inequality (the average of the square root is at most the
square root of the average). Now letσ be the uniform probability measure overS(w∗), and observe that
σ is 2−m-uniform. So byLemma3.2,

E
|ψ〉∈σ

[‖|Φt〉− |Φt−1〉‖2]≤ 2 E
|ψ〉∈σ

[√
〈ψ|ρt |ψ〉

]
≤ 2
√

E
|ψ〉∈σ

[〈ψ|ρt |ψ〉]

≤ 2

√
1+ ln(1/2−m)

2n = O

(√
m+1

2n

)
,

where the second line again uses the Cauchy-Schwarz inequality. Finally,

E
|ψ〉∈S(w∗)

[‖|ΦT〉− |Φ0〉‖2]≤
T

∑
t=1

E
|ψ〉∈S(w∗)

[‖|Φt〉− |Φt−1〉‖2] = O

(
T

√
m+1

2n

)

by the triangle inequality. This implies that, for|ΦT〉 and|Φ0〉 to be distinguishable withΩ(1) bias, we
must haveT = Ω

(√
2n/(m+1)

)
.

UsingTheorem3.3, we can straightforwardly show a quantum oracle separation betweenQMA and
QCMA.

Proof ofTheorem1.1. Let L be a unary language chosen uniformly at random. The oracleU = {Un}n≥1
is as follows: if 0n ∈ L, thenUn |ψn〉 = −|ψn〉 for somen-qubit marked state|ψn〉 chosen uniformly at
random, whileUn |ϕ〉= |ϕ〉 whenever〈ϕ|ψn〉= 0. Otherwise, if 0n /∈ L, thenUn is then-qubit identity
operation.

Almost by definition,L ∈ QMAU . For given a quantum witness|ϕ〉, theQMA verifier first prepares
the state(1/

√
2)(|0〉 |ϕ〉+ |1〉 |ϕ〉), then appliesUn to the second register conditioned on the first register

being|1〉. Next the verifier applies a Hadamard gate to the first register, measures it, and accepts if and
only if |1〉 is observed. If 0n ∈ L, then there exists a witness—namely|ϕ〉 = |ψn〉—that causes the
verifier to accept with probability 1. On the other hand, if 0n /∈ L, thenno witness causes the verifier to
accept with nonzero probability.

On the other hand, we claim thatL /∈ QCMAU with probability 1 over the choice ofL andU . This
can be seen as follows. Fix aQCMA machineM, and letSM (n) be the event thatMU succeedson 0n:
that is, either 0n ∈ L and there exists a stringw such thatMU accepts|0n〉 |w〉 with probability at least
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2/3, or 0n /∈ L andMU accepts|0n〉 |w〉 with probability at most 1/3 for all w. ThenTheorem3.3readily
implies that there exists a positive integerN such that for alln≥ N,

Pr
L,U

[SM (n) | SM (1) , . . . ,SM (n−1)]≤ 2
3

.

Hence
Pr
L,U

[SM (1)∧SM (2)∧·· · ] = 0.

Now, because of the Solovay-Kitaev Theorem [21], the number of possibleQCMA machines is only
countably infinite. So by the union bound,

Pr
L,U

[∃M : SM (1)∧SM (2)∧·· · ] = 0

as well.

We can similarly show a quantum oracle separation betweenBQP/qpoly andBQP/poly.

Theorem 3.4. There exists a quantum oracle U such thatBQPU/qpoly 6= BQPU/poly.

Proof. In this caseUn will act on 2n qubits. LetL be a binary language chosen uniformly at random,
and letL(x) = 1 if x ∈ L andL(x) = 0 otherwise. Also, for alln, let |ψn〉 be ann-qubit state chosen
uniformly at random. ThenUn acts as follows: for allx∈ {0,1}n,

Un(|ψn〉 |x〉) = (−1)L(x) |ψn〉 |x〉 ,

but Un(|φ〉 |x〉) = |φ〉 |x〉 whenever〈φ |ψn〉 = 0. ClearlyL ∈ BQPU/qpoly; we just take|ψn〉 as the
advice. On the other hand, by essentially the same argument as forTheorem1.1, one can show that
L /∈ BQPU/poly with probability 1 overL andU .

3.1 Proof of geometric lemma

In this section we fill in the proof ofLemma3.2, thereby completing the oracle separation theorems.
In provingLemma3.2, the first step is to ask the following question: among allp-uniform probability

measuresσ , which is the one that maximizes E|ψ〉∈σ

[
|〈ψ|0〉|2

]
? We can think of the set of quantum

statesCPN−1 as a container, which contains a fluidσ that is gravitationally attracted to the state|0〉.
Then intuitively, the answer is clear: the way to maximize E|ψ〉∈σ

[
|〈ψ|0〉|2

]
is to “fill the container

from the bottom,” subject to the density constraintpσ ≤ µ. In other words, the optimalσ should be
the uniform measure over the regionR(p) given by|〈ψ|0〉| ≥ h(p), whereh(p) is chosen so that the
volume ofR(p) is a p fraction of the total volume ofCPN−1. The following lemma makes this intuition
rigorous.

Lemma 3.5. Among all p-uniform probability measuresσ overCPN−1, the one that maximizes

E
|ψ〉∈σ

[
|〈ψ|0〉|2

]
is τ (p), the uniform measure over the regionR(p) defined above.
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Proof. Since|〈ψ|0〉|2 is nonnegative, we can write

E
|ψ〉∈σ

[
|〈ψ|0〉|2

]
=
∫ ∞

0
Pr

|ψ〉∈σ

[
|〈ψ|0〉|2 ≥ y

]
dy.

We claim that settingσ := τ (p) maximizes the integrand for every value ofy. Certainly, then, setting
σ := τ (p) maximizes the integral itself as well.

To prove the claim, we consider two cases. First, ify≤ h(p)2, then

Pr
|ψ〉∈τ(p)

[
|〈ψ|0〉|2 ≥ y

]
= 1,

which is certainly maximal. Second, ify > h(p)2, then

Pr
|ψ〉∈τ(p)

[
|〈ψ|0〉|2 ≥ y

]
=

1
p
· Pr
|ψ〉∈µ

[
|〈ψ|0〉|2 ≥ y

]
.

This is maximal as well, since

Pr
|ψ〉∈σ

[
|〈ψ|0〉|2 ≥ y

]
≤ 1

p
· Pr
|ψ〉∈µ

[
|〈ψ|0〉|2 ≥ y

]
for all p-uniform probability measuresσ .

Lemma3.5 completely describes the probability measure that maximizes E|ψ〉∈σ

[
|〈ψ|0〉|2

]
, except

for one detail: the value ofh(p) (or equivalently, the radius ofR(p)). The next lemma completes the
picture.

Lemma 3.6. For all p,

h(p) =
√

1− p1/(N−1) = Θ

(√
log1/p

N

)
.

Proof. We will show that for allh,

Pr
|ψ〉∈µ

[|〈ψ|0〉| ≥ h] =
(
1−h2)N−1

,

whereµ is the uniform probability measure overCPN−1. Settingp := Pr|ψ〉∈µ [|〈ψ|0〉| ≥ h] and solving
for h then yields the lemma.

Let~z= (z0, . . . ,zN−1) be a complex vector; then let~r = (r0, . . . , rN−1) and~θ = (θ0, . . . ,θN−1) be real
vectors such thatzk = rkeiθk for each coordinatek. Also, letD be a Gaussian probability measure on
CN, with density function

P(~z) = P(~r) =
1

πN e−‖~r‖
2
2 .
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Let d~r be shorthand fordr0 · · ·drN−1. Then we can express the probability that|〈ψ|0〉| ≥ h as

Pr
|ψ〉∈µ

[|〈ψ|0〉| ≥ h] = Pr
~z∈D

[|z0| ≥ h‖~z‖2]

= Pr
~r,~θ

[r0 ≥ h‖~r‖2]

=
∫
~r,~θ : r0≥h‖~r‖2

P(~r) r0 · · · rN−1 d~rd~θ

= (2π)N
∫
~r : r0≥h‖~r‖2

1
πN e−‖~r‖

2
2 r0 · · · rN−1 d~r

=
∫ ∞

r1,...,rN−1=0

(∫ ∞

r0=h

√
r21+···+r2N−1

1−h2

2e−r2
0r0dr0

)
2N−1e−r2

1−···−r2
N−1 r1dr1 · · · rN−1drN−1

=
∫ ∞

r1,...,rN−1=0
e−(r2

1+···+r2
N−1)·h2/(1−h2)2N−1e−r2

1−···−r2
N−1 r1dr1 · · · rN−1drN−1

=
∫ ∞

r1,...,rN−1=0
2N−1e−(r2

1+···+r2
N−1)/(1−h2) r1dr1 · · · rN−1drN−1

=
(∫ ∞

r=0
2e−r2/(1−h2)rdr

)N−1

=
(
1−h2)N−1

.

By combining Lemmas3.5and3.6, we can now proveLemma3.2: that if σ is p-uniform, then for
all mixed statesρ,

E
|ψ〉∈σ

[〈ψ|ρ|ψ〉] = O

(
1+ log1/p

N

)
.

Proof ofLemma3.2. If p≤ e−Ω(N) then the lemma is certainly true, so supposep≥ e−O(N). Since the
concluding inequality is linear inρ, we can assume without loss of generality thatρ is a pure state.
Indeed, by symmetry we can assume thatρ = |0〉〈0|. So our aim is to upper-bound E|ψ〉∈σ

[
|〈ψ|0〉|2

]
,

whereσ is anyp-uniform probability measure. ByLemma3.5, we can assume without loss of generality
thatσ = τ (p) is the uniform measure over all|ψ〉 such that|〈ψ|0〉| ≥ h(p). Then letting

|ψ〉= α0 |0〉+ · · ·+αN−1 |N−1〉 ,

r =
√
|α1|2 + · · ·+ |αN−1|2,
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we have

E
|ψ〉∈τ(p)

[
|〈ψ|0〉|2

]
= E

|ψ〉 : |α0|≥h(p)

[
|α0|2

]
= E

|ψ〉 : r2≤1−h(p)2

[
1− r2]

=
∫√1−h(p)2

0 r2N−3
(
1− r2

)
dr∫√1−h(p)2

0 r2N−3dr

=

[
r2N−2

2N−2−
r2N

2N

]√1−h(p)2

0[
r2N

2N

]√1−h(p)2

0

=
1−
(
1− 1

N

)(
1−h(p)2

)
(
1− 1

N

)(
1−h(p)2

)
= O

(
1
N

+h(p)2
)

= O

(
1+ log1/p

N

)
,

where the last line follows fromLemma3.6.

4 Upper bound

In this section we show that the lower bound ofTheorem3.3is basically tight. In particular, letU be an
n-qubit quantum oracle, and suppose we are given anm-bit classical proof thatU is not the identity, but
instead conceals a marked state|ψ〉 such thatU |ψ〉 = −|ψ〉. Then provided 2n≤ m≤ 2n, a quantum
algorithm can verify the proof by makingO

(√
2n/m

)
oracle calls toU . This matches our lower bound

whenm≥ 2n.4

Let N = 2n be the dimension ofU ’s Hilbert space. Then the idea of our algorithm is to use a “mesh”
of states|φ1〉 , . . . , |φM〉 ∈ CPN−1, at least one of which has nontrivial overlap with every pure state in
CPN−1. A classical proof can then help the algorithm by telling it the|φi〉 that is closest to|ψ〉. More
formally, define theh-ball about|φ〉 to be the set of|ϕ〉 such that|〈φ |ϕ〉| ≥ h. Then define anh net
for CPN−1 of size Mto be a set of states|φ1〉 , . . . , |φM〉 such that every|ψ〉 ∈ CPN−1 is contained in the
h-ball about|φi〉 for somei.5 We will use the following theorem, which follows from Corollary 1.2 of
Böröczky and Wintsche [11].

4When m� 2n, the best upper bound we know is the trivialO
(√

2n
)

. However, we conjecture thatO
(√

2n/m
)

is

achievable in this case as well.
5These objects are often calledε-nets, with the obvious relationh = cosε.
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Theorem 4.1 ([11]). For all 0 < h < 1, there exists an h-net forCPN−1 of size

O

(
N3/2 log

(
2+Nh2

)
(1−h2)N

)
.

Böröczky and Wintsche do not provide an explicit construction of such anh-net; they only prove
that it exists.6 Later, we will give an explicit construction with only slightly worse parameters than those
of Theorem4.1. But first, let us prove an upper bound on query complexity.

Theorem 4.2. Suppose we have an n-qubit quantum oracle U such that either (i) U= Uψ for some|ψ〉,
or (ii) U = I is the identity operator. Then given an m-bit classical witness in support of case (i), where
m≥ 2n, there exists a quantum algorithm that verifies the witness using O

(√
2n/m+1

)
queries to U.

Proof. By Theorem4.1, there exists anh-netS for CP2n−1 of cardinality

|S|= O

(
23n/2 log

(
2+2nh2

)
(1−h2)2n

)
.

Setting|S|= 2m gives

m≤ 3n
2

+2n log

(
1

1−h2

)
+O(logn) .

Solving forh, we obtain

h≥
√

m−3n/2−O(logn)
2n ,

which isΩ
(√

m/2n
)

providedm≥ 2n. So there exists a collection ofM = 2m states,|φ1〉 , . . . , |φM〉 ∈
CP2n−1, such that for every|ψ〉, there exists ani such that|〈φi |ψ〉| ≥ h whereh = Ω

(√
m/2n

)
.

Given an oracleU = U|ψ〉, the classical witnessw∈ {0,1}m will simply encode an indexi such that
|〈φi |ψ〉| ≥ h. If we prepare|φi〉 and feed it toU , then the probability of finding the marked state|ψ〉
is |〈φi |ψ〉|2 ≥ h2. Furthermore, if we do find|ψ〉, we will know we did (i. e. a control qubit will be|1〉
instead of|0〉). From these facts, it follows immediately from the amplitude amplification theorem of
Grover [15] and Brassard et al. [12] that we can find|ψ〉 with probabilityΩ(1) using

O

(√
1
h2 +1

)
= O

(√
2n

m
+1

)
queries toU .

Of course, if we care aboutcomputationalcomplexity as well as query complexity, then it is not
enough for anh-net to exist—we also need the states in theh-net to be efficiently preparable. Fortunately,
proving an explicit version ofTheorem4.1turns out to be simpler than one might expect. We will do so
with the help of the following inequality.

6Note that we cannot just start from an explicit construction of a sphere-packing, and then double the radius of the spheres
to get a covering. We could do that if we wanted a covering ofCPN−1 by smallballs. But in our case,h is close to zero, which
means that the balls already have close to the maximal radius.
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Lemma 4.3. Let x1 ≥ ·· · ≥ xN ≥ 0 be nonnegative real numbers with x2
1 + · · ·+ x2

N = 1. Then for all
k∈ {1, . . . ,N},

max
1≤t≤k

[
x1 + · · ·+xt√

t

]
≥

√
k

Ndlog2Ne
.

Proof. Let L = dlog2Ne. Then for all i ∈ {1, . . . ,L}, let si = x2
2i−1 + · · ·+ x2

2i−1, where we adopt the
convention thatx j = 0 if j > N. Then

s1 + · · ·+sL = x2
1 + · · ·+x2

N = 1,

so certainly there exists ani ∈ {1, . . . ,L} such thatsi ≥ 1/L. Fix thati. Then since thex j ’s are arranged
in nonincreasing order, we have

x2i−1 ≥
√

si

2i−1 ≥
√

1
2i−1L

.

There are now two cases. First, ifk≤ 2i−1 then

max
1≤t≤k

[
x1 + · · ·+xt√

t

]
≥ x1 + · · ·+xk√

k
≥ k√

k
x2i−1 ≥

√
k

2i−1L
≥

√
k

Ndlog2Ne
.

Second, if 2i−1 ≤ k then

max
1≤t≤k

[
x1 + · · ·+xt√

t

]
≥ x1 + · · ·+x2i−1√

2i−1
≥ 2i−1
√

2i−1
x2i−1 ≥

√
1
L
≥

√
k

Ndlog2Ne
.

This completes the proof.7

We now useLemma4.3to construct anh-net.

Theorem 4.4. For all 0 < h < 1, there exists an h-net|φ1〉 , . . . , |φM〉 for CPN−1 of size

M = 4N ·2O(h2N log2 N) ,

as well as a quantum algorithm that runs in time polynomial inlogM and that prepares the state|φi〉
given i as input.

7One might wonder whether the
√

1/dlog2Ne factor can be eliminated. However, a simple example shows that it can be

improved by at most a constant factor. Supposex j :=
√

1
jw , wherew = ∑n

j=1
1
j ≈ lnN. Then for allt ∈ {1, . . . ,N}, we have

x1 + · · ·+xt√
t

≈ 2√
lnN

.
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Proof. Assume without loss of generality thatN = 2n andM = 2m are both powers of 2, and let|ψ〉 be
ann-qubit target state. Then it suffices to show that a quantum algorithm, using

m= log2M = n+2+O
(
h22nn2)

bits of classical advice, can prepare a state|φ〉 such that|〈φ |ψ〉| ≥ h in time polynomial inm.
Let k :=

⌊
m

n+2

⌋
. Also, let us express|ψ〉 in the computational basis as

|ψ〉= ∑
z∈{1,...,N}

αz|z〉 ,

and let|z1〉 , . . . , |zN〉 be an ordering of basis states with the property that|αz1| ≥ · · · ≥ |αzN |. Then by
Lemma4.3, there exists an integert ∈ {1, . . . ,k} such that

|αz1|+ · · ·+ |αzt |√
t

≥

√
k

Ndlog2Ne
=

√
k

Nn
.

Here we can assume thatαz1, . . . ,αzt are all nonzero, since otherwise we simply decreaset. Now let
βz be the element of{1,−1, i,−i} that is closest toαz/ |αz|, with ties broken arbitrarily. Then our
approximation to|ψ〉 will be the following:

|φ〉 :=
1√
t

t

∑
i=1

βzi |zi〉 .

To specify|φ〉, the classical advice just needs to listz1, . . . ,zt andβz1, . . . ,βzt . Sincet ≤ k, this requires
at mostk(n+2)≤mbits. Given the specification, it is clear that|φ〉 can be prepared in time polynomial
in tn≤m. Moreover,

〈φ |ψ〉=
1√
t

t

∑
i=1

β
∗
zi

αzi ≥
1√
t

t

∑
i=1

|αzi |√
2
≥
√

k
2Nn

.

We can therefore seth :=
√

k
2Nn, so thatk = 2h2Nn. Hence

m≤ (n+2)(k+1) = (n+2)
(
2h2Nn+1

)
= n+2+O

(
h22nn2) .

The following is an immediate consequence ofTheorem4.4.

Corllary 4.5. Suppose we have an n-qubit quantum oracle U such that either (i) U= Uψ for some
|ψ〉, or (ii) U = I is the identity. Then given an m-bit classical witness in support of case (i), there
exists a quantum algorithm that verifies the witness using O

(
n
√

2n/m+1
)

queries to U, together with
O
(
n2
√

2n/m+poly(m)
)

steps of auxiliary computation.

It is natural to ask whether we could construct a smaller explicith-net, and thereby improve the
query complexity inCorollary4.5 from O

(
n
√

2n/m+1
)

to the optimalO
(√

2n/m+1
)
. We certainly

believe that this is possible, but it seems to require more complicated techniques from the theory of
sphere coverings.
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5 Group non-membership

The Group Non-Membership (GNM) problem is defined as follows. We are given a finite groupG, a
subgroupH ≤G, and an elementx∈G. The problem is to decide whetherx /∈ H.

But how areG, H, andx specified? To abstract away the details of this question, we will use Babai
and Szemeŕedi’s model ofblack-box groups[8]. In this model, we know generators forH, and we know
how to multiply and invert the elements ofG, but we “do not know anything else.” More formally, we
are given access to a group oracleO, which represents each elementx∈ G by a randomly-chosen label
`(x) ∈ {0,1}n for somen� log2 |G|. We are also given the labels of generators〈h1, . . . ,hl 〉 for H. We
are promised that every element has a unique label.

Suppose that our quantum computer’s state has the form

|Φ〉= ∑
x,y∈G, z

αx,y,z|`(x) , `(y)〉 |z〉 ,

where`(x) and`(y) are labels of group elements and|z〉 is a workspace register. Then the oracleO

maps this state to

O |Φ〉= ∑
x,y∈G, z

αx,y,z
∣∣`(x) , `

(
xy−1)〉 |z〉 .

Note that if the first register does not contain valid labels of group elements, thenO can behave arbitrar-
ily. Thus, from now on we will ignore labels, and talk directly about the group elements they represent.
Using O, it is easy to see that we can perform group inversion (by putting the identity elemente in
thex register) and multiplication (by first invertingy, then puttingy−1 in they register), as well as any
combination of these operations.

We will show that GNM has polynomially-boundedQCMA query complexity. In other words, if
x /∈ H, then Merlin can provide Arthur with a poly(n)-bit classical witness of that fact, which enables
Arthur to verify it with high probability using poly(n) quantum queries to the group oracleO.

To prove this result, we first need to collect various facts from finite group theory. Callg1, . . . ,gk an
efficient generating setfor a finite groupG if (i) k = O(log|G|), and (ii) everyx∈ G is expressible as
ge1

1 · · ·g
ek
k wheree1, . . . ,ek ∈ {0,1}. The following lemma was shown by Babai and Erdős [6].

Lemma 5.1 ([6]). Every finite group G has an efficient generating set.

Given finite groupsΓ andG, we say that functionsf ,g : Γ →G areε-closeif

Pr
x∈Γ

[ f (x) 6= g(x)]≤ ε .

Also, recall thatf : Γ →G is a homomorphism iff (xy) = f (x) f (y) for all x,y∈ Γ. The following two
propositions relateε-closeness to homomorphisms.

Proposition 5.2. If two homomorphisms f,g : Γ →G are(1/2− ε)-close for anyε > 0, then f= g.
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Proof. Fix x ∈ Γ; then for ally∈ Γ, we havef (x) = f (y) f
(
y−1x

)
andg(x) = g(y)g

(
y−1x

)
. By the

union bound,

Pr
y∈Γ

[
f (y) = g(y)∧ f

(
y−1x

)
= g

(
y−1x

)]
≥ 1− Pr

y∈Γ
[ f (y) 6= g(y)]− Pr

y∈Γ

[
f
(
y−1x

)
6= g

(
y−1x

)]
> 0.

Hence there exists ay such thatf (y) = g(y) and f
(
y−1x

)
= g

(
y−1x

)
. But this implies thatf (x) =

g(x).

In particular,Proposition5.2 implies that if a functionf is 1/5-close to a homomorphism, then it is
1/5-close to auniquehomomorphism (1/5 being an arbitrary constant less than 1/4).

Proposition 5.3 (Ben-Or et al. [9]). Given finite groupsΓ and G, a function f: Γ → G, and a real
numberε > 0, if

Pr
x,y∈Γ

[ f (xy) 6= f (x) f (y)]≤ ε

then f isε-close to a homomorphism.

Together, Propositions5.2and5.3have the following easy corollary.

Corllary 5.4. There is a randomized algorithm which, given finite groupsΓ and G and a function
f : Γ→G as input, makes O(1) oracle queries to f , accepts with probability1 if f is a homomorphism,
and rejects with probability at least2/3 if f is not1/5-close to a homomorphism. Also, if f is1/5-close
to some homomorphism̃f , then there exists a randomized algorithm that, given an input x∈ Γ, makes
O(r) oracle queries to f , and outputs̃f (x) with probability at least1−1/2r .

In the present context, our algorithms are not limited in space or time, and we can say for simplicity
thatΓ is represented by its entire multiplication table. It is then easy, as the proof will require, to pick
elements ofΓ uniformly at random. By contrast,G is represented by oracle access, but there will be no
need to choose its elements at random.

Proof. The first algorithm simply choosesO(1) pairsx,y∈ Γ uniformly at random, accepts iff (xy) =
f (x) f (y) for all of them, and rejects otherwise. Letk = O(r). Then the second algorithm chooses
z1, . . . ,zk ∈ Γ uniformly at random, and outputs the plurality answer among

f (z1) f
(
z−1
1 x
)
, . . . , f (zk) f

(
z−1
k x
)

breaking ties arbitrarily.

It follows from the Classification of Finite Simple Groups that there are at most two finite simple
groups of any particular order (see [13] for example). The following well-known result is a combination
of that fact and of a theorem due to Neumann [25].

Theorem 5.5. There are NO((log2 N)2) groups of order N up to isomorphism.8

8The most accurate asymptotic result on the number of groups of orderN, in terms of the prime factorization ofN, appears
in a paper by Pyber [26].
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Finally, recall that the Hidden Subgroup Problem (HSP) is defined as follows. We are given a fi-
nite groupG, and oracle access to a functionf : G→ Z. We are promised that there exists a “hidden
subgroup”H ≤ G such thatf (x) = f (y) if and only if x andy belong to the same left coset ofH. The
problem is then to output a set of generators forH. Whether HSP can be solved in quantum polynomial
time, for various non-abelian groupsG, is one of the most actively studied questions in quantum com-
puting. However, if we only care about query complexity, then Ettinger, Høyer, and Knill [14] proved
the following useful result.

Theorem 5.6 ([14]). There is a quantum algorithm such that, given any finite group G as oracular input,
solvesHSPusing onlypolylog(|G|) quantum queries to f (together with a possibly exponential amount
of postprocessing).9

We can now proveTheorem1.2: that GNM has polynomially-boundedQCMA query complexity.

Proof ofTheorem1.2. Let G be a group of order at most 2n, and letO be a group oracle that maps each
element ofG to ann-bit label. Also, given (the labels of) group elementsx,h1, . . . ,hm∈G, let H be the
subgroup ofG generated by〈h1, . . . ,hm〉. Then the problem is to decide ifx /∈ H.

In ourQCMA protocol for this problem, Merlin’s witness will consist of the following:

• An explicit “model group”Γ, of order at most 2n.

• A list of elementsγ1, . . . ,γk ∈ Γ, wherek = O(log|Γ|).

• A corresponding listg1, . . . ,gk ∈G.

• Another listz,λ1, . . . ,λm∈ Γ.

We should be more explicit about the notion of an “explicit” groupΓ, and about the syntax of
this witness. ByTheorem5.5, there are at most 2poly(n) groups of order|Γ| ≤ 2n up to isomorphism.
Since Arthur is allowed unlimited computation and is only restricted in queries, he can construct a
full multiplication table forΓ using only the name of its isomorphism type. The multiplication table
is not unique, because the elements ofΓ can be permuted; but for instance Arthur could construct
the lexicographically first such table. Since Merlin can anticipate Arthur’s construction ofΓ, he can
then refer to elements ofΓ using the same construction. He can also refer to elements ofG since he
understands the oracle. In conclusion, Merlin can specify the witness using only poly(n) bits.

If Merlin is honest, then the witness will have the following three properties:

(1) γ1, . . . ,γk is an efficient generating set forΓ.

(2) z /∈ Λ, whereΛ is the subgroup ofΓ generated by〈λ1, . . . ,λm〉.

(3) There exists an embedding̃f : Γ→G, such that (i)f̃ (γi) = gi for all i ∈ {1, . . . ,k}, (ii) f̃ (λ j) = h j

for all j ∈ {1, . . . ,m}, and (iii) f̃ (z) = x.

9Indeed, forNormal HSP (which is the special case we care about), Hallgren, Russell, and Ta-Shma [16] improved this
result, showing how to find a hidden subgroup using onlyO(log|G|) queries tof (again, with exponential postprocessing).
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Suppose for the moment that (1)-(3) all hold. Then there exists an embeddingf̃ : Γ→G, which maps
the set〈γ1, . . . ,γk〉 in Γ to the set〈g1, . . . ,gk〉 in G. Furthermore, this embedding satisfiesf̃ (Λ) = H and
f̃ (z) = x. Sincez /∈ Λ by (2), it follows thatx /∈ H as well, which is what Arthur wanted to check.

So it suffices to verify (1)-(3). In the remainder of the proof, we will explain how to do this using a
possibly exponential amount of computation, but only poly(n) quantum queries to the group oracleO.

First, since properties (1) and (2) only involve the explicit groupΓ, not the black-box groupG,
Arthur can verify these properties “free of cost.” In other words, regardless of how much computation
he needs, he never has to query the group oracle.

The nontrivial part is to verify (3). It will be convenient to split (3) into the following sub-claims:

(3a) There exists a homomorphism̃f : Γ →G such thatf̃ (γi) = gi for all i ∈ {1, . . . ,k}.

(3b) f̃ satisfiesf̃ (z) = x and f̃ (λ j) = h j for all j ∈ {1, . . . ,m}.

(3c) f̃ is injective (i. e. is an embedding intoG).

To verify (3a), first Arthur fixes a “canonical representation” of each elementγ ∈ Γ. This represen-
tation has the form

γ = γ
e1
1 · · ·γek

k ,

where〈γ1, . . . ,γk〉 is the efficient generating set forΓ, ande1, . . . ,ek ∈ {0,1} are bits depending onγ.
Next he defines a functionf : Γ →G by

f (γ) := ge1
1 · · ·g

ek
k

for all γ ∈ Γ. By using the canonical representation ofγ, Arthur can evaluatef (γ) using at mostk−1
queries to the group oracleO. Finally Arthur appeals toCorollary 5.4. If f is not 1/5-close to a
homomorphism, then by usingO(1) queries tof , with high probability Arthur can detect thatf is not a
homomorphism. In that case Merlin has been caught cheating, so Arthur rejects. On the other hand, if
f is 1/5-close to some homomorphism̃f , then by usingO(log|Γ|) queries tof , with high probability
Arthur can “correct”f to f̃ . In that case it remains only to check thatf̃ (γi) = gi for all i ∈ {1, . . . ,k}.

Once Arthur has an efficient procedure for computingf̃ —that is, a procedure that involves only
poly(n) queries toO—he can then verify property (3b) directly.

To verify (3c), Arthur runs the algorithm of Ettinger, Høyer, and Knill [14] for the Hidden Subgroup
Problem. Notice that, sincẽf : Γ → G is a homomorphism, there must be a “hidden subgroup”K ≤
Γ—namely the kernel of̃f —such that f̃ is constant on cosets ofK and distinct on distinct cosets.
Furthermore,̃f is injective if and only ifK is trivial. But deciding whetherK is trivial is just an instance
of HSP, and can therefore be solved using poly(n) quantum queries byTheorem5.6.

5.1 Computational complexity

Theorem1.2 showed that one can always verify group non-membership using a polynomial-size clas-
sical witness, together with polynomially many quantum queries to the group oracleO. Unfortunately,
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while thequerycomplexity is polynomial, thecomputationalcomplexity might be exponential. How-
ever, as mentioned inSection1.1, we conjecture that this shortcoming ofTheorem1.2can be removed,
and that GNM is inQCMA for any group oracleO.

In our QCMA protocol, the main computational problem that needs to be solved is not the general
HSP, but rather the Normal Hidden Subgroup Problem (NHSP)—that is, HSP where the hidden sub-
group is normal. This is because the kernel of a homomorphism is always a normal subgroup. Hallgren,
Russell, and Ta-Shma [16] showed that NHSP is inBQP for an explicit groupΓ, provided that the
quantum Fourier transform overΓ can be implemented efficiently (and its output can be interpreted).
Furthermore, Moore, Rockmore, and Russell [23] showed that many classes of finite groupsG have an
explicit modelΓ ∼= G for which this assumption holds.

Even if NHSP is inBQP, there are two remaining obstacles to showing that GNM is inQCMA. First,
we need to be able to verify group non-membership in the explicit model groupΓ, possibly with the help
of additional classical information from Merlin. Second, we need an efficient algorithm to compute the
function f̃ : Γ→G for everyγ ∈ Γ, even though̃f is explicitly defined only on the generatorsγ1, . . . ,γk.

In the context of computational complexity (as opposed to query complexity), the notion of an
“explicit group” needs to be better explained. Keeping in mind that this entire section is only one
possible path to showing that GNM is inQCMA, here is one definition that captures the ideas of previous
sections.

Definition 5.7. A (polylog-time) explicit sequenceof finite groups is a sequenceΓn such that each
term is a group law on the set{1, . . . , |Γn|}. Moreover the multiplication functionmn(x,y) = xy and
the inversion functionin(x) = x−1 can both be computed in polynomial time in log|Γn|. An explicit
sequence isuniversalif every finite group is isomorphic to at least oneΓn.

For example, the symmetric group (sequence)Sn is explicit, because the standard notation for per-
mutations can be compressed to the integers from 1 ton!. Likewise the matrix groups GL(n,q) form an
explicit sequence in the joint parameter(n,a(x)), wherea(x) is a polynomial whose splitting field isFq.
But there is no reason to believe that an explicit model of a group is unique up to polylog-time bijections.
On the contrary, if the discrete logarithm problem is hard, then(Fq)× andZ/(q−1) are inequivalent
explicit models for isomorphic groups; and both models appear naturally in the obvious explicit model
for matrix groups.

It is not known whether there is a universal explicit sequence of finite groups. The current best
result for solvable groups is quasipolylogarithmic time [17]. Theorem5.5 implies that the number of
isomorphism classes of finite groups does not by itself preclude a universal explicit sequence.

If there is a universal sequence of explicit finite groups with the following additional properties, then
following the methods of the previous section, it would show that GNM is inQCMA. (We drop the
formal subscriptn.)

(i) EachΓ has a list of generatorsγ1, . . . ,γk ∈ Γ that can be computed inO(polylog|Γ|) time. More-
over, given an elementγ ∈ Γ, there is a polylog algorithm to express it as a (polylogarithmic
length) product ofγ1, . . . ,γk. It suffices if this algorithm is polylog time on average for randomγ.
A straight-line program rather than a product also suffices.

(ii) NHSP overΓ is in BQP.
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(iii) GNM overΓ is in QCMA.

If the Hallgren-Russell-Ta-Shma algorithm is used for condition (ii), then there should be an al-
gorithm for the quantum Fourier transform overΓ. In this case the QFT produces randomly-chosen
characters of the quotient groupΓ/Λ for some normal subgroupΛ. The characters must also be listed in
some explicit form so that so thatΛ can be recognized in polylog time, or at least that the triviality ofΛ
can be so recognized. (Here, too, “explicit” means that the characters ofΓ are numbered consecutively
and that the relevant algorithms use this numbering.)

If Γ is the symmetric groupSn, or an abelian group expressed as a product of cyclic groups, or if it
is a matrix group GL(n,q), then there is an easy generating set that satisfies (i) (exercise for the reader).
In the abelian case, NHSP is inBQP by the work of Shor [29] and Kitaev [20]; GNM is in P by linear
algebra. IfΓ = Sn, then NHSP is trivial (since the only normal subgroup isAn) and GNM is inP by the
work of Sims [30]. Meanwhile Babai and Szemerédi [8] showed that if every finite simple group has an
explicit polylogarithmic presentation, then GNM is inNP for GL(n,q).

Since the point of condition (ii) is to allow Arthur to confirm Merlin’s claimed homomorphism from
Γ to G, a polylogarithmic presentation ofΓ would yield an alternative method that does not rely on the
algorithm of Corollary5.4. The status of this problem is that the only unknown case among finite simple
groups is Ree groups of type2G2(q); all other finite simple groups are known to have such a presentation
[7, 18]. Moreover, it is known that short presentations of a sequence{Γ1, . . . ,Γk} of finite simple groups
can be combined to obtain a short presentation for any finiteΓ composed of{Γ1, . . . ,Γk} [7]. However,
there is no known polylog-time algorithm to generate an explicit presentation of each suchΓ, even given
a presentation of each simpleΓ j as input. In summary, the groups2G2(q) and the extension problem
are the remaining obstructions to a universal, explicit sequence of polylog presentations of finite groups,
which would provide a simple alternative to condition (ii). Regardless, all known QFT algorithms
employ flags of subgroups, which are structures that can also be used to satisfy condition (ii).

Obviously the entire program is far from complete, and each step is open to variations. But we
optimistically conjecture that all steps can be completed for arbitrary finite groups.

6 Mimicking random quantum oracles

We have seen, on the one hand, that there exists a quantum oracle separatingQMA from QCMA; and on
the other hand, that separating these classes by aclassicaloracle seems much more difficult. Together,
these results raise a general question: how much “stronger” are quantum oracles than classical ones?
In particular, are there complexity classesC andD that can be separated by quantum oracles, but such
that separating them by classical oracles is almost as hard as separating them in the unrelativized world?
Whatever the answer, we conjecture thatQMA andQCMA arenotexamples of such classes. The reason
is that it seems possible, using only classical oracles, to approximate quantum oracles similar to ones
that would separateQMA from QCMA.

To illustrate, letσ be the uniform probability measure over 2n×2n unitary diagonal matrices. (In
other words, each diagonal entry ofD ∈ σ is a random complex number with norm 1.) Also, letH⊗n

be a tensor product ofn Hadamard matrices. Then letςk be the probability measure over 2n×2n unitary
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matrices

U = DkH
⊗nDk−1H⊗n · · ·H⊗nD1H⊗n

induced by drawing eachDi independently fromσ . In other words,U ∈ ςk is obtained by first applying
a Hadamard gate to each qubit, then a random 2n×2n diagonal matrix, then Hadamard gates again, then
another random diagonal matrix, and so onk times.

Note that we can efficiently apply such aU—at least to polynomially many bits of precision—if
given a classical random oracleA. To do so, we simply implement the random diagonal matrixDi as

∑
x∈{0,1}n

αx |x〉 → ∑
x∈{0,1}n

ω
A(i,x)

αx |x〉 ,

whereA(i,x) is a uniformly randomn-bit integer indexed byi andx, andω = e2π i/2n
.

Now let µ be the uniform probability measure over 2n×2n unitary matrices. Ifk� 2n, thenςk is
not close toµ in variation distance, since the former has onlyΘ(k2n) degrees of freedom while the
latter hasΘ(k4n).10 On the other hand, we conjecture that aU drawn fromςk will “look random” to
any polynomial-time algorithm, and that this property can be used to prove a classical oracle separation
betweenQMA andQCMA.

Let us explain what we mean in more detail. Suppose we are given access to ann-qubit unitary
oracleU , and want to decide whether

(i) U was drawn uniformly at random (that is, fromµ), or

(ii) U was drawn uniformly at random conditioned on there existingn/2-qubit pure states|ψ〉 and|ϕ〉
such thatU

(
|0〉⊗n/2 |ψ〉

)
≈ |0〉⊗n/2 |ϕ〉.

In case (i), the states|ψ〉 and |ϕ〉 will exist only with negligible probability.11 It follows that the
above problem is inQMAU—since if case (ii) holds, then a succinct quantum proof of that fact is just
|ψ〉 itself. We now state three conjectures about this problem, in increasing order of difficulty.

Conjecture 6.1. The above problem is not inQCMAU . In other words, if case (ii) holds, there is no
succinct classical proof of that fact that can be verified with high probability using poly(n) quantum
queries toU .

PresumablyConjecture6.1 can be proved using ideas similar to those inSection3. If so, then the
next step is to replace the uniform measureµ by the “pseudorandom” measureςk.

10Admittedly, it is still conceivable that the finite-precision version ofςk is close in variation distance to the finite-precision
version ofµ. However, a more sophisticated argument that counts distinguishable unitaries rules out that possibility as well.

11Indeed, the reason we did not ask for(n−1)-qubit states|ψ〉 and|ϕ〉 such thatU (|0〉 |ψ〉)≈ |0〉 |ϕ〉 is that such states will
exist (almost) generically. For the choice of|ψ〉 gives us 2n−1−1 independent complex variables, whereas the requirement
thatU (|0〉 |ψ〉) have the form|0〉 |ϕ〉 imposes only 2n−1 constraints. Asking for(n−2)-qubit states|ψ〉 and |ϕ〉 such that
U (|00〉 |ψ〉) ≈ |00〉 |ϕ〉 might suffice (since now we have 2n−2−1 variables versus 3·2n−2 constraints), but we wish to stay
on the safe side.
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Conjecture 6.2. Suppose that instead of being drawn fromµ, the unitaryU is drawn fromςk for some
k = Ω(n). Then the probability that there existn/2-qubit states|ψ〉 and|ϕ〉 such that

U
(
|0〉⊗n/2 |ψ〉

)
≈ |0〉⊗n/2 |ϕ〉

is still negligibly small.

Now suppose we want to decide whether

(i’) U was drawn fromςk, or

(ii’) U was drawn fromςk conditioned on there existingn/2-qubit states|ψ〉 and|ϕ〉 such that

U
(
|0〉⊗n/2 |ψ〉

)
≈ |0〉⊗n/2 |ϕ〉 .

Also, letA be a classical oracle that encodes the diagonal matricesD1, . . . ,Dk such that

U = DkH
⊗nDk−1H⊗n · · ·H⊗nD1H⊗n .

If Conjecture6.2 is true, then case (ii’) can be verified inQMAA. So to obtain a classical oracle separa-
tion betweenQMA andQCMA, the one remaining step would be to prove the following.

Conjecture 6.3. Case (ii’) cannot be verified inQCMAA.

6.1 From random oracles to random unitaries

The previous discussion immediately suggests even simpler questions about the ability of classical or-
acles to mimic quantum ones. In particular, could aBQP machine use a classical random oracle to
prepare a uniformly randomn-qubit pure state? Also, could it use such an oracle to apply a random
n-qubit unitary?

In this section we answer the first question in the affirmative, and present partial results about the
second question. We first need a notion that we call the “ε-smoothing” of a probability measure.

Definition 6.4. Let σ be a probability measure over|ψ〉 ∈ CP2n−1. Then theε-smoothing ofσ , or
Sε (σ), is the probability measure obtained by first drawing a state|ψ〉 from σ , and then drawing a state
|ϕ〉 uniformly at random subject to〈ϕ|ψ〉 ≥ 1− ε.

Let µ be the uniform measure overCP2n−1. Also, let Q be a quantum algorithm that queries a
classical oracleA. Suppose that, given 0n as input,QA outputs the pure state|ψA〉 ∈CP2n−1. Then we say
thatQ “approximates the uniform measure withinε” if, as we range over uniform randomA⊆ {0,1}n,
the induced probability measureσ over|ψA〉 satisfies‖Sε (σ)−µ‖ ≤ ε.

Theorem 6.5. For all polynomials p, there exists a quantum algorithm Q that runs in polynomial time,
and that approximates the uniform measure within2−p(n).
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Proof Sketch.The algorithmQ is as follows: first prepare a uniform superposition overn-bit strings.
Then, using the classical random oracleA as a source of random bits, map this state to

|Ψ〉=
1

2n/2 ∑
x∈{0,1}n

|x〉
(√

1−|αx|2 |0〉+αx |1〉
)

,

where eachαx is essentially a Gaussian random variable. More precisely, letq(n) = (n+ p(n))2. Then
eachαx is drawn independently from a complex Gaussian distribution with mean 0 and variance 1/q(n),
with the two technicalities that (1)αx is rounded toq(n) bits of precision, and (2) the cutoff|αx| ≤ 1 is
imposed. (By a tail bound, with overwhelming probability we will have|αx| ≤ 1 for all x anyway.)

Next measure the second register of|Ψ〉 in the standard basis. The outcome|1〉 will be observed
with probability Ω(1/q(n)). Furthermore, conditioned on|1〉 being observed, one can check that the
distributionσ over the reduced state of the first register satisfies‖S2−p(n) (σ)−µ‖ ≤ 2−p(n). (We omit
the calculation.) Hence it suffices to repeat the algorithmO(q(n)) times.

Theorem6.5shows that, by using a classical random oracleA, we can efficiently prepare a uniformly
randomn-qubit state|ψA〉. But what if we want to use a random oracle to apply a uniformly random
n-qubit unitary UA? It is clear that we can do this if we have exponential time: given an oracleA,
we simply query an exponentially long prefixA∗ of A, and then treatA∗ as an explicit description of a
quantum circuit forUA. But what if we can make only polynomially many quantum queries toA? We do
not know whether that suffices for applying a random unitary; indeed, we do not even have a conjecture
about this.

What wecan show is that a single quantum query to the classical oracleA does not suffice for
applying a random unitary. In particular, suppose every entry of ann-qubit unitary matrixUA is a
degree-1 polynomial in the bits ofA (as it must be, ifUA is the result of a single quantum query). Then
UA can assume at most 42n

distinct values as we range over the possibleA’s, as opposed to theΩ
(
c22n)

that would be needed to approximate everyn-qubit unitary. To prove this statement, we first need a
lemma about matrices satisfying a certain algebraic relation.

Lemma 6.6. Let E1, . . . ,EM be nonzero N×N matrices overC, and suppose that EiE
†
j +E jE

†
i = 0 for

all i 6= j. Then M≤ 2N.

Proof. Suppose by contradiction thatM > 2N. Let e(k)
i be vector inCN corresponding to thekth row of

Ei . Then the conditionEiE
†
j +E jE

†
i = 0 implies that

e(k)
i ·e(l)

j +e(k)
j ·e(l)

i = 0

for all i 6= j andk, l , where· denotes the complex inner product. Now for alli, let k(i) be the minimum

k such thate(k)
i 6= 0, and consider the vectorse(k(1))

1 , . . . ,e(k(M))
M ∈ CN. Certainly these vectors are not all

orthogonal—indeed, sinceM > 2N, there must existi 6= j such that Re
(

e(k(i))
i ·e(k( j))

j

)
6= 0. There are

now two cases: ifk(i) = k( j), then

e(k(i))
i ·e(k(i))

j +e(k(i))
j ·e(k(i))

i 6= 0

THEORY OFCOMPUTING, Volume 3 (2007), pp. 129–157 152



QUANTUM VS . CLASSICAL PROOFS AND ADVICE

and we are done. On the other hand, ifk(i) 6= k( j), then

e(k(i))
j ·e(k( j))

i =−e(k(i))
i ·e(k( j))

j

is nonzero. Hencee(k(i))
j ande(k( j))

i must themselves be nonzero. But ifk(i) > k( j), then this contradicts
the minimality ofk(i), while if k(i) < k( j) then it contradicts the minimality ofk( j).

We can now prove the main result.

Theorem 6.7. Let U(X) be an N×N matrix, every entry of which is a degree-1 complex polynomial in
variables X= (x1, . . . ,xk). Suppose U(X) is unitary for all X∈ {0,1}k. Then U(X) can assume at most
4N distinct values as we range over X∈ {0,1}k.

Proof. By suitable rotation, we can assume without loss of generality thatU
(
0k
)

is theN×N identity
I . Let Xi be thek-bit string with a ‘1’ only in theith position, and letEi := U (Xi)− I . Then for alli,

EiE
†
i = (U (Xi)− I)

(
U (Xi)

†− I†
)

= I −U (Xi)−U (Xi)
† + I =−Ei −E†

i .

Next, for all i 6= j, let Xi j be thek-bit string with ‘1’s only in theith and j th positions. SinceU (X) is an
affine function ofX, we have

U (Xi j ) = U
(

0k
)

+
(
U (Xi)−U

(
0k
))

+
(
U (Xj)−U

(
0k
))

= I +Ei +E j .

Therefore

0 = U (Xi j )U (Xi j )
†− I

= (I +Ei +E j)
(

I† +E†
i +E†

j

)
− I

=
(

EiE
†
i +E jE

†
j

)
+
(

EiE
†
j +E jE

†
i

)
+
(

Ei +E†
i

)
+
(

E j +E†
j

)
= EiE

†
j +E jE

†
i .

Here the first line uses unitarity, and the fourth line uses the fact thatEi +E†
i = −EiE

†
i andE j +E†

j =
−E jE

†
j . Lemma6.6 now implies that there can be at most 2N nonzeroEi ’s. HenceU (X) can depend

nontrivially on at most 2N bits ofX, and can assume at most 22N values.

7 Open problems

The most obvious problems left open by this paper are, first, to prove a classical oracle separation
betweenQMA andQCMA, and second, to prove that the Group Non-Membership problem is inQCMA.
We end by listing four other problems.

(1) The classQMA(2) is defined similarly toQMA, except that now there are two quantum provers
who are guaranteed to share no entanglement. Is there a quantum oracle relative to which
QMA(2) 6= QMA?
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(2) Is there a quantum oracle relative to whichBQP/qpoly 6⊂ QMA/poly? This would show that the
containmentBQP/qpoly ⊆ PP/poly proved in [2] is in some sense close to optimal.

(3) Can we use the ideas ofSection6 to give a classical oracle relative to whichBQP 6⊂ PH? What
about a classical oracle relative to whichNP⊆ BQP butPH 6⊂ BQP?12

(4) Is there a polynomial-time quantum oracle algorithmQ, such that for everyn-qubit unitary trans-
formationU , there exists a classical oracleA such thatQA approximately implementsU? Alter-
natively, would any such algorithm require more than poly(n) queries toA?13
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[6] * L. BABAI AND P. ERDŐS: Representation of group elements as short products.Annals of
Discrete Math., 12:27–30, 1982.5, 5.1

[7] * L. BABAI , A. J. GOODMAN, W. M. KANTOR, E. M. LUKS, AND P. P. ṔALFY : Short pre-
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[11] * K. BÖRÖCZKY JR. AND G. WINTSCHE: Covering the sphere by equal spherical balls. In
Discrete and Computational Geometry: The Goodman-Pollack Festschrift, pp. 237–253. Springer,
2003. 4, 4.1

[12] * G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP: Quantum amplitude amplification
and estimation. In S. J. LOMONACO AND H. E. BRANDT, editors,Quantum Computation and
Information, Contemporary Mathematics Series. AMS, 2002. quant-ph/0005055. [arXiv:quant-
ph/0005055]. 4

[13] * J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER, AND R. A. WILSON: Atlas of
Finite Groups. Clarendon Press, Oxford, 1985.5

[14] * M. ETTINGER, P. HØYER, AND E. KNILL : The quantum query complexity of the hidden
subgroup problem is polynomial.Inform. Proc. Lett., 91(1):43–48, 2004. quant-ph/0401083.
[IPL:10.1016/j.ipl.2004.01.024, arXiv:quant-ph/0401083]. 1.1, 5, 5.6, 5

[15] * L. K. GROVER: A framework for fast quantum mechanical algorithms. InProc. 30th STOC, pp.
53–62, 1998. quant-ph/9711043. [STOC:10.1145/276698.276712, arXiv:quant-ph/9711043]. 4

[16] * S. HALLGREN, A. RUSSELL, AND A. TA-SHMA : The hidden subgroup problem and quantum
computation using group representations.SIAM J. Computing, 32(4):916–934, 2003. Conference
version in STOC’2000, p. 627-635. [SICOMP:10.1137/S009753970139450X]. 9, 5.1
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