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S. AARONSON AND G. KUPERBERG

1 Introduction

If someone hands you a quantum state, is that more “useful” than being handed a classical string with a
comparable number of bits? In particular, are there truths that you can efficiently verify, and are there
problems that you can efficiently solve, using the quantum state but not using the string? These are the
guestions that this paper addresses, and that it answers in several contexts.

Recall thatQMA, or Quantum Merlin-Arthur, is the class of decision problems for which a “yes”
answer can be verified in quantum polynomial time, with help from a polynomial-size quantum wit-
ness statey). Many results are known abo@MA: for example, it has natural complete promise
problems 9], allows amplification of success probabiliti€??], and is contained i®?P [22]. Raz and
Shpilka 7] have also studied communication complexity variantQbfA.

Yet, as Aharonov and NaveB][pointed out in 2002, the very definition QMA raises a fundamental
guestion. Namely: is it really essential that the witness be quantum, or does it suffice for the algorithm
verifying the witness to be quantum? To address this question, Aharonov and Naveh defined the class
QCMA, or “Quantum Classical Merlin-Arthur,” to be the same@gA except that now the witness is
classical We can then ask wheth&MA = QCMA. Not surprisingly, the answer is that we don’t know.

If we can't decide whether two complexity classes are equal, the usual next step is to construct a
relativized world that separates them. This would provide at least some evidence that the classes are
different. But in the case dMA versusQCMA, even this limited goal has remained elusive.

Closely related to the question of quantum versus classical proofs is that of quantum versus classical
advice Compared to a proof, advice has the advantage that it can be trusted, but the disadvantage that it
can’t be tailored to a particular input. More formally, BRP /gpoly be the class of problems solvable in
quantum polynomial time, with help from a polynomial-size “quantum advice stgtg’that depends
only on the input lengtim. Then the question is whethBQP /qpoly = BQP/poly, whereBQP /poly
is the class of problems solvable in quantum polynomial time with help from polynomiatisigsical
advice. Aaronsond] showed thaBQP /qpoly C PP /poly, which at least tells us that quantum advice
is not “infinitely” more powerful than classical advice. But, like Q&1A versusQCMA question, the
BQP/qpoly versusBQP /poly question has remained open, with not even an oracle separation known.

1.1 Ourresults

This paper introduces new tools with which to att&MA versusQCMA and related questions.

First, we achieve an oracle separation betw@&WA and QCMA, but only by broadening the defi-
nition of “oracle.” In particular, we introduce the notion offaantum oraclewhich is just an infinite
sequence of unitarids = {U,},,~; that a quantum algorithm can apply in a black-box fashion. Just as
a classical oracle models a subroutine to which an algorithm has black-box access, so a quantum oracle
models a quantum subroutine, which can take quantum input and produce quantum output. We are able
to give a quantum oracle that separa@@dA from QCMA:

Theorem 1.1. There exists a quantum oracle U such tRAY £ QCMAY.

1Some say that this class would more accurately be c&IMQA, for “Classical Merlin Quantum Arthur” BuRCMA
has stuck.
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Similarly, there exists a quantum oradlesuch thaBQPY /qpoly # BQPY /poly.

Theoreml.1 implies that if QMA = QCMA, then any proof of this fact will require “quantumly
nonrelativizing techniques”: techniques that are sensitive to the presence of quantum oracles. Currently,
we do not know oinygquantumly nonrelativizing techniques that are not also classically nonrelativizing.
For this reason, we believe that quantum oracle separations merit the same informal interpretation as
classical oracle separations: almost any argument that one might advance against the former, is also an
argument against the latter! The difference is that quantum oracle results are sometimes much easier to
prove than classical ones. To our knowledge, this paper provides the first example of this phenomenon,
but other examples have since emerdge®4].

It might be objected that, even if quantum oracle separations are no less trustworthy than classical
ones, they certainly arenfhoretrustworthy, and complexity theorists have known since the celebrated
IP = PSPACE theorem 8] that oracle results sometimes “point in the wrong direction.” We wish to
stress two points in response. First, oracle results provide atdeasunderstanding, thereby opening
the way to further progress. This is particularly true in quantum computing, where even the oracle
results tend to be much less intuitively obvious than they are in the classical world. Second, complexity
theorists do not currently have any nonrelativizing technique for “non-interactive” classes <ibtAas
and QCMA even remotely analogous to the arithmetization technique that Shaghiuged to show
IP = PSPACE. We hope such a technique will someday be discovered.

UnderlyingTheoreml.1lis the following lower bound. Suppose a unitary oradjeacts om qubits,
and suppose that either @}, is the identity, or (ii) there exists a secretjubit “marked stately;,) such
thatUn |yn) = —|wn), butU, @) = |@) whenever]o) is orthogonal tgy,). Then even if a quantum
algorithm is givenm bits of classical advice abolits,), the algorithm still need€(/2"/(m+ 1))
queries taJ, to distinguish these cases. Note that wines- 0, we recover the usua'l(\@) lower
bound for Grover search as a special case. At the other extreme, 2f' then our bound gives nothing—
not surprisingly, since the classical advice might contain explicit instructions for pregarihg The
point is that, ifmis not exponentially large, then exponentially many queries are needed.

Since|yy) is an arbitrary 2-dimensional unit vector, it might be thought obvious that"2bits are
needed to describe that vector. The key point, however, is tha@@éA verifier is given not only a
classical description diy;,), but also oracle accesslty. So the question is whether somembination
of these resources might be exponentially more powerful than either one alone. We prove that the answer
is no, using the hybrid argument of Bennett et &0] together with geometric results about partitionings
of the unit sphere.

In Section4, we show that our lower bound is basically tight, by giving an algorithm that fipgls
usingO(+/27/m) queries wherm > 2n. This algorithm has the drawback of beingmputationally
inefficient. To fix this, we give another algorithm that finds,) using O(n\/Z”/m) queries together
with O(n2\ /2"/m-+ poly(m)) computational steps.

Having separate@MA from QCMA by a quantum oracle, we next revisit the question of whether
these classes can be separated tiassicaloracle. Right now, we know of only one candidate problem
for such a separation in the literature: the Group Non-Membership (GNM) problem, which Watpus [
placed iNQMA even though BabaBb| showed it is not inMA as an oracle problef.In Group Non-
Membership, Arthur is given black-box access to a finite gr@jgogether with a subgroup < G

2|nterestingly, the class@dA andAM were originally defined by Babai in connection with GNM].[
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specified by its generators and an elemeatG. Arthur’s goal is to verify thak ¢ H, using a number
of group operations polynomial in 10G|. (Note that the groupnembershigroblem is inNP by a
result of Babai and Szentti [8].) In Watrous’s protocol, the guantum witness is simply an equal
superpositiorfH) over the elements dfi. Given such a witness, Arthur can check non-membership by
comparing the statgbl) and|xH), and can similarly check the veracity |bf) by comparing it tghH),
whereh is an almost-uniformly random elementiaf

Evidently a classical proof of non-membership would have to be completely different. Nevertheless,
in Section5 we show the following:

Theorem 1.2. GNM has polynomially-bounde@CMA query complexity.

Theoreml.2 implies that it is pointless to try to prove a classical oracle separation betfen
andQCMA by proving a lower bound on the quantum query complexity of Group Non-Membership. If
such a separation is possible, then a new approach will be needed.

The idea of the proof oTheoreml.2 is that Merlin can “pull the group out of the black box.” In
other words, he can claim an embedding of a model gioumto G. This claim is entirely classical,
but verifying it requires solving the Normal Hidden Subgroup Problem (NHSP) ithis problem has
low query complexity by a result of Ettinger, Hayer, and Knll#], but is not known to be iBQP. In
addition, analyzing the description bfis not known to be computationally efficient. Nonetheless, in
Section5.1we discuss evidence that NHSP isBQP and that non-membership foris in NP. Based
on this evidence, we conjecture the following:

Conjecture 1.3. GNM is in QCMA.

Given our results irBection5, the question remains of whether there is some other way to prove a
classical oracle separation betwe@MA and QCMA. In Section6, we conjecture that the answer is
yes:

Conjecture 1.4. There exists a classical oraddesuch thatQMA” £ QCMA”. Furthermore, this can
be proven by exhibiting an oracle problem with polynom@VA query complexity but exponential
QCMA query complexity.

The reason we believ€onjecturel.4 is that it seems possible, for many purposes, to “encode” a
guantum oracle into a classical one.Saction6 we explain more concretely what we mean by that, and
present some preliminary results. For example, we show that there ed&® algorithm that maps
an oracle stringA to ann-qubit pure statéw,a), such that ifA is uniformly random, themy,) is (under
a suitable metric) close to uniformly random under the Haar measure. We also study the question of
applying a randonN x N unitary matrix using a random classical oracle in the same way. We do not
know how to do this, but we show that one quantum query will not suffice for this purpose. To prove
this, we show that a quantum algorithm that uses just one query can apply at™uiffedentN x N
unitaries, whereas the number of unitaries required to approximate the uniform distribution grows like
29(N%).

We end inSection7 with some open problems.

THEORY OF COMPUTING, Volume 3 (2007), pp. 129-157 132



QUANTUM VS. CLASSICAL PROOFS AND ADVICE

2 Preliminaries

Throughout this paper, we refer to the setNotlimensional pure states &PN~1 (that is, complex
projective space withN — 1 dimensions). We use Pr to denote probability, and E to denote expectation.
We assume familiarity with standard complexity classes sudh@# andMA. For completeness,

we now defineQMA, QCMA, BQP /qpoly, andBQP /poly.

Definition 2.1. QMA is the class of languagasC {0,1}" for which there exists a polynomial-time
quantum verifieR and a polynomiap such that, for alk € {0,1}":

(i) If x e L then there exists p(n)-qubit quantum proofe) such thatQ accepts with probability at
least 23 given|x) |@) as input.

(i) If x¢ L thenQ accepts with probability at mosy/3 given|x) |¢) as input, for all purported proofs
[

The clasQCMA is defined similarly, except thiw) is replaced by a classical striag {0, 1}’3(”).

Definition 2.2. BQP/qpoly is the class of languagésC {0,1}" for which there exists a polynomial-
time quantum algorithn®, together with a set of statd$yn) } .-, (where|yn) has sizep(n) for some
polynomialp), such that for alk € {0,1}":

(i) If xe L thenQ accepts with probability at leasy2 given|x) |y;,) as input.

(i) If x¢ L thenQ accepts with probability at mosy/3 given|x) |y;,) as input.

The classBQP/poly is defined similarly, except thaty,) is replaced by a classical strirag €
{0,137

Let us now explain what we mean by a “quantum oracle.” For us, a quantum oracle is simply an
infinite sequence of unitary transformatiobls= {U},..,. We assume that eath, acts onp(n) qubits
for some known polynomigp. We also assume that given mbit string as input, a quantum algorithm
calls onlyU,, notUy, for anym = n. This assumption is only made for simplicity; our results would go
through without it When there is no danger of confusion, we will refetkpsimply asU.

Formally, the oracle access mechanism is as follows. Assume a quantum computer’s state has the
form

©) = 5 ax[2)[0s)

where|z) is a workspace register afé, ;) is a p(n)-qubit answer register. Then to “queldy” means
to apply thep (n)-qubit unitary transformation that maps) to

|q)’> = z 0z[2)Un[¢7) -

3If one made the analogous assumptiomlmssicalcomplexity—that given an input of length an algorithm can query
the oracle only on strings of length—one could simplify a great many oracle results without any loss of conceptual content.
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Let C be a quantum complexity class, andUet= {U,},., be a quantum oracle. Then By, we will
mean the class of problems solvable b@ anachine that, given an input of length can quenyJ, at
unit cost as many times as it likes.
In defining the notion of quantum oracle, at least two choices present themselves that have no coun-
terpart for classical oracles:

() If we can apply a quantum oradlé, then can we also apply controllédi{that is,U conditioned
on a control qubitb))?

(2) If we can applyJ, then can we also apply —1?

At least for the present paper, the answers to these questions will not matter, for the following
reasons. First, all of the quantum oracléghat we consider will be self-inverse (that i$,= U1).
Second, while our algorithmaill need to apply controlletd, that is only for the technical reason that
we will defineU so thatU |y) = —|y) if |y) is the marked state, atdl|p) = |¢) whenevero|y) = 0.

If we stipulated instead that |y) |b) = |y) |b@ 1) andU | @) |b) = |@) |b) whenever ¢|y) = 0, thenU
alone would sulffice.

Yet even though these choices will not matter for our results, it still seems worthwhile to discuss
them a bit, since they might arise in future work involving quantum oracles.

One could argue that (i) the purpose of an oracle is to modabgoutinethat an algorithm can call
without understanding its internal structure, and that (ii) given a quantum circuit for applying some uni-
tary operatio, one can easily produce a circuit for applying controllédr U 1, without understand-
ing anything about the original circuit’s structure. In particular, to produce a circuit for contidllete
simply conditions each gate on the control qubit; while to produce a circuif fdr one simply inverts
all the gates and reverses their order. These considerations suggest that the answers to questions (1) and
(2) should both be ‘yes.” On the other hand, it would still be interesting to know whether disallowing
controlledy or U~ would let us prove more quantum oracle separations. (Note that if we disallow
these operations, then the set of inequivalent quantum oracles beleogez9

3 Quantum oracle separations

The aim of this section is to provheoreml.1: that there exists a quantum oratlesuch thaQMAY
QCMAVY. The same ideas will also yield a quantum oraélsuch thaBQPY /qpoly # BQPY /poly.

To prove these oracle separations, we first need a geometric lemma about probability measures on
guantum states. Let be the uniform probability measure oMgrdimensional pure states (that is, over
CPN-1). The following notion will play a key role in our argument.

Definition 3.1. For all p € [0,1], a probability measure over CPN1 s called p-uniformif po < p.
Equivalently,o is p-uniform if it can be obtained by starting from and then conditioning on an event
that occurs with probability at leagt

So for example, we obtain p-uniform measure if we start from and then condition on lgd./p
bits of classical information aboli). Our geometric lemma says that¥f) is drawn from gp-uniform
measure, then for every mixed sta@tethe squared fidelity betwegw) andp has small expectation.
More precisely:
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Lemma 3.2. Leto be a p-uniform probability measure ov&®N~1. Then for allp,

<1+Iog1/p>.

E_[vlply)]=0 N

ly)€o

The proof ofLemma3.2 is deferred toSection3.1 In this section we assume the lemma, and
show how to use it to prove our main result. In particular, we show that any quantum algorithm needs
Q(y/2"/(m+1)) queries to find am-qubit marked statéy), even if givenm bits of classical advice
about|y).

Theorem 3.3. Suppose we are given oracle access to an n-qubit unitary U, and want to decide which of
the following holds:

(i) There exists an n-qubit “quantum marked state/) such that Uy) = —|y), but U|¢) = |¢)
whenever¢|y) = 0; or

(i) U =1 is the identity operator.

Then even if we have an m-bit classical witness w in support of case (i), we stilkh 9%)
gueries to verify the witness, with bounded probability of error.

Proof. If m= Q(2") then the theorem is certainly true, so suppose 0(2"). Let A be a quantum
algorithm that queried . Also, letU,, be ann-qubit unitary such thatl, |y) = — |y), butUy |¢) = |¢)
whenever(¢|y) = 0. ThenA's goal is to accept if and only i = U,, for some|y).

For eac-qubit pure statéy), let us fix a classical witness € {0,1}™ that maximizes the proba-
bility that A accepts, givel),, as oracle. LeS(w) be the set ofy)’s associated with a given witness
Since theS(w)’s form a partition ofcP?' -1, clearly there exists a withess, calint, such that

1

m "

o L) e Swl = 5

Fix thatw* (or in other words, hardwire™ into A). Then to prove the theorem, it suffices to establish the
following claim: A cannot distinguish the case= Uy, from the cas& = | by makingo(/2"/(m+ 1))
queries tdJ, with high probability if|y) is chosen uniformly at random fro®(w*).

To prove the claim, we use a generalization of the hybrid argument of Bennett £fjalSpppose
that A makesT queries tdJ. (Technically speaking, we should also allow queries to contraJledut
this will make no difference in our analysis.) Then for alk < T, let |®;) be the final state oA,
assuming thal) = | for the firstt queries, andJ = Uy, for the remainingl’ —t queries. Thus$®) is
the final state in case (i), whil@r) is the final state in case (ii). We will argue thet) cannot be very
far from |®;_1), with high probability over the choice of marked st&e. Intuitively, this is because
the computations ofd;) and|®;_1) differ in only a single query, and with high probability that query
cannot have much overlap witly). We will then conclude, by the triangle inequality, thég) cannot
be far from|®) unlessT is large.
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More formally, letp; be the marginal state of the query register just befora'thguery, assuming
the “control caseU =1. Also, letpr = 5 pi |¢i) (@] be an arbitrary decomposition pf into pure states.
Then for everyi, the component dfig;) orthogonal td y) is unaffected by thé" query. Therefore

1P = [P-1)ll < > pi-2[ @) =2 piv/(Wlo) (ol w)
< z\/z pi (Wl (o1 w) =2/ (ylpdw),

where the third line uses the Cauchy-Schwarz inequality (the average of the square root is at most the
square root of the average). Now tebe the uniform probability measure ov&fw"), and observe that
o is 2~ M-uniform. So byLemma3.2,

o)~ o1l <2 E [Vivlavl] <2,/ E [(wiplw)

E
ly)eo lv)eo ly)eo

<> /1+In(2i/2—m) :0( m2+n1>7

where the second line again uses the Cauchy-Schwarz inequality. Finally,

E HH<D>—|<'>>H]<T E (o) — (@)l =0 T/ T
s 1PT =190l < 5 ) B 90 = (@02 2n
by the triangle inequality. This implies that, fgpr) and|®o) to be distinguishable witk (1) bias, we

must havel = Q(y/2"/(m+1)). O

Using Theorem3.3, we can straightforwardly show a quantum oracle separation bet@&nand
QCMA.

Proof of Theoreml.1 LetL be a unary language chosen uniformly at random. The otaete{Up},.~;
is as follows: if @ € L, thenUy | yn) = — | wn) for somen-qubit marked statéy,) chosen uniformly at
random, whileU, |@) = |@) whenever¢|y;,) = 0. Otherwise, if 0 ¢ L, thenU, is then-qubit identity
operation.

Almost by definition,L € QMAY. For given a quantum witne$g), the QMA verifier first prepares
the statd1/v/2) (|0) |@) +|1) |@)), then applies), to the second register conditioned on the first register
being|1). Next the verifier applies a Hadamard gate to the first register, measures it, and accepts if and
only if |1) is observed. If 0 e L, then there exists a withess—namé) = |y,)—that causes the
verifier to accept with probability 1. On the other hand," 0L, thenno witness causes the verifier to
accept with nonzero probability.

On the other hand, we claim thiat# QCMAVY with probability 1 over the choice df andU. This
can be seen as follows. Fix@MA machineM, and letSy (n) be the event thavl¥ succeedsn 0"
that is, either 0 € L and there exists a string such thatMY acceptg0") |w) with probability at least
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2/3,0r 0" ¢ L andMV acceptg0") |w) with probability at most 13 for allw. ThenTheorenm3.3readily
implies that there exists a positive integésuch that for alh > N,

wWIN

EJ[SM(n)’SM(l),...,S\A(n_l)] <
Hence
EJ[SV'(]-)/\S\/I(Z)/\---]:O.

Now, because of the Solovay-Kitaev Theorei][ the number of possiblIQCMA machines is only
countably infinite. So by the union bound,

LF_’J[EMZS\A(l)/\SM(Z)/\“-]:O
as well. 0

We can similarly show a quantum oracle separation beti&#n/qpoly andBQP/poly.
Theorem 3.4. There exists a quantum oracle U such tB@PY /qpoly # BQPY /poly.

Proof. In this casdJ, will act on 2n qubits. LetL be a binary language chosen uniformly at random,
and letL (x) = 1 if x € L andL (x) = 0 otherwise. Also, for alh, let |y) be ann-qubit state chosen
uniformly at random. Thel, acts as follows: for alk € {0,1}",

Un (lyn) X)) = (=1)"% [yn) [x) ,

but Uy (|¢) X)) = |¢) |x) whenever(¢|yn) = 0. ClearlyL € BQPY /qpoly; we just take|y,) as the
advice. On the other hand, by essentially the same argument agdorem1.1, one can show that
L ¢ BQPY /poly with probability 1 over. andU. O

3.1 Proof of geometric lemma

In this section we fill in the proof dfemma3.2, thereby completing the oracle separation theorems.

In provingLemma3.2, the first step is to ask the following question: amongpaliniform probability
measures, which is the one that maximizesw}geaﬂ(w\O)\z]? We can think of the set of quantum
statesCPN"! as a container, which contains a fluidthat is gravitationally attracted to the sta.
Then intuitively, the answer is clear: the way to maximiqg,>gg[\(1//\0>\2] is to “fill the container
from the bottom,” subject to the density constraiat < . In other words, the optimay should be
the uniform measure over the regi®{p) given by|(y|0)| > h(p), whereh(p) is chosen so that the
volume ofR (p) is ap fraction of the total volume of PN, The following lemma makes this intuition
rigorous.

Lemma 3.5. Among all p-uniform probability measuresover CPN 1, the one that maximizes

E [Itwio)?]

ly)eo

is 7 (p), the uniform measure over the regi®{p) defined above.
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Proof. Since|(y]0)|? is nonnegative, we can write

00

E liwior] = [ pr [lvio)? > y]ay.

We claim that settings := 7 (p) maximizes the integrand for every valueyofCertainly, then, setting
o := 7(p) maximizes the integral itself as well.
To prove the claim, we consider two cases. Firsy,f h(p)z, then

Pr 02>yl =1,
P [0 2]

which is certainly maximal. Second,yf> h(p)?, then

1
Pr 0 2> — —. Pr O 2> ]
lw)et(p) [|<W| ) _y] P |weu {|<W| )| —y}

This is maximal as well, since

[EEN

Pr o>yl <= Pr 0)> >
Pr [l =y < 7 Pr [[twio) 2]

for all p-uniform probability measures. O]

Lemma3.5 completely describes the probability measure that maximi;@gﬁ[\(w\m\z], except
for one detail: the value df(p) (or equivalently, the radius &R (p)). The next lemma completes the
picture.

Lemma 3.6. For all p,

B 1 logl/p
hmwﬂhwwn_e< E ).

Proof. We will show that for allh,

N _ 2y N—1
Pr o) =h = (L)

wherep is the uniform probability measure ov&PN . Settingp := Priyyeu [[{w]0)| > h] and solving
for h then yields the lemma.

LetZ= (z,...,zy_1) be a complex vector; then IBt= (ro,...,rn-1) and@ = (60,...,6N-1) be real
vectors such that, = r &% for each coordinat& Also, letD be a Gaussian probability measure on
CN, with density function

1 -3

PZ)=P(r)= ﬁe*
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Let dr be shorthand fodrg---dry_1. Then we can express the probability thag|0)| > h as

Pr [[{(w]0)| = h] = Pr[|zo| > h[Z|,]
ly)eun 2D

= Prlro > h{|r||,]
7.0

=/ P(?) fro---n—1 d?dé
7.8 : ro=h|rll,

1
_ (ZE)N/ e M vy g dF
Firo>h|fF), T

0

@ 2 1 2 g2
= / 212 2e rOI'od o N-1g11 N-1 ridry---ry—1drn—1
r,fN-1=0 \ Jro=hy/ 1*14]2@

*© (122 \2/(1_p2 1 22
— Oe (ri+ +rN—1) h /(1 h )ZN lg—11 '™N-1rqdry---ry_1drn_g
M1, IN-1=

© 2 2 2
— / 2N—1e—(r1+~~+rN71)/(1—h ) I’1d ry- rN—ld N1
ry,...,,n-1=0

© 2 2 N-1
— ( 2g~1?/(1-h )rdr>
r=0

=(1-m)"

By combining Lemmag.5and3.6, we can now provéemma3.2 that if ¢ is p-uniform, then for
all mixed statep,

E [vlply)]=0

ly)eo

<1+I(’)\Igl/p>.

Proof ofLemma3.2. If p < e 2N then the lemma is certainly true, so supppse e °N). Since the
concluding inequality is linear ip, we can assume without loss of generality tha a pure state.
Indeed, by symmetry we can assume that |0) (O]. So our aim is to upper-bound ., [|<1//|O>|2],
whereo is anyp-uniform probability measure. Byemma3.5, we can assume without loss of generality
thato = 7(p) is the uniform measure over aiy) such that(y|0)| > h(p). Then letting

ly) =0p|0)+---+an-1|[N—1),

r= \/!a1\2+---+!aN71\2,
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we have
E 0)|?| = E ao|?
Iweﬂm[wa>‘] |ww\%@mm[|°|}
= E [1-r7]
ly) : r2<1-h(p)?
A 1-h(p)* 2N-3 (1—r?)dr
a fov 1-h(p)* r2N-3qr
pN-2 2N 1-h(p)*
EERE I
[ﬂ} 1-h(p)®
N,
1-(1-%)(1—hunﬂ
(1-%) (1-n(p?)
1 2
=0 <N +h(p) >
B 1+logl/p
_o ( 294/P)
where the last line follows frohemmag3.6. O

4 Upper bound

In this section we show that the lower boundTdfeorem3.3is basically tight. In particular, ld# be an
n-qubit quantum oracle, and suppose we are givemit classical proof that is not the identity, but
instead conceals a marked stae such that) |y) = — |y). Then provided 8 < m < 2", a quantum
algorithm can verify the proof by makir@(\ /2”/m) oracle calls tdJ. This matches our lower bound
whenm> 2n.4

LetN = 2" be the dimension dfi's Hilbert space. Then the idea of our algorithm is to use a “mesh”
of states|¢1),...,|¢w) € CPN1, at least one of which has nontrivial overlap with every pure state in
CPN-1. A classical proof can then help the algorithm by telling it th¢ that is closest toy). More
formally, define theh-ball about|¢) to be the set ofg) such thati(¢|¢)| > h. Then define am net
for CPN-1 of size Mto be a set of statds) ..., |¢w) such that everyy) € CPN1is contained in the
h-ball about|¢;) for somei.> We will use the following theorem, which follows from Corollary 1.2 of
Boroczky and Wintschel[l].

4When m < 2n, the best upper bound we know is the triv(é\l(@). However, we conjecture tha (\/Zn/m) is
achievable in this case as well.
5These obijects are often calleehets, with the obvious relatidm= cose.
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Theorem 4.1 ([L1]). Forall 0 < h < 1, there exists an h-net f@PN ! of size

o <N3/2Iog (2+ Nh2)> |

(1-r)"

Boroczky and Wintsche do not provide an explicit construction of such-aat; they only prove
that it exists? Later, we will give an explicit construction with only slightly worse parameters than those
of Theoremd.1 But first, let us prove an upper bound on query complexity.

Theorem 4.2. Suppose we have an n-qubit quantum oracle U such that either=()Jy, for somejy),
or (i) U = I is the identity operator. Then given an m-bit classical witness in support of case (i), where
m > 2n, there exists a quantum algorithm that verifies the witness us(ngZ’)/m+ 1) queriesto U.

Proof. By Theoren¥.1, there exists ah-nets for CP?' 1 of cardinality

5/—0 2%"2)0g (2+2"h?)
B (1—h?)? '

2 I h2 .

Solving forh, we obtain

h> \/m— 3n/22—n O(logn) ,

which isQ(,/m/2") providedm > 2n. So there exists a collection M = 2™ states|¢1),...,|du) €
CP?'~1, such that for everyy), there exists ansuch tha(¢i|y)| > hwhereh = Q(/m/2").

Given an oraclé) = U),,, the classical witness € {0, 1}™ will simply encode an indeksuch that
|(¢i|w)| > h. If we prepare|¢;) and feed it tdJ, then the probability of finding the marked state)
is [(¢i|w)|? > h2. Furthermore, if we do findiy), we will know we did (i. . a control qubit will bél)
instead of|0)). From these facts, it follows immediately from the amplitude amplification theorem of
Grover [L5] and Brassard et al1P] that we can findy) with probability Q (1) using

O(\/E—i—l) :O<\/?mn+l>

gueries tdJ. O

Of course, if we care abowomputationalcomplexity as well as query complexity, then it is not
enough for am-net to exist—we also need the states intitreet to be efficiently preparable. Fortunately,
proving an explicit version of heorermé.1turns out to be simpler than one might expect. We will do so
with the help of the following inequality.

6Note that we cannot just start from an explicit construction of a sphere-packing, and then double the radius of the spheres
to get a covering. We could do that if we wanted a coveringBY 1 by smallballs. But in our caseh is close to zero, which
means that the balls already have close to the maximal radius.

THEORY OF COMPUTING, Volume 3 (2007), pp. 129-157 141



S. AARONSON AND G. KUPERBERG

Lemma 4.3. Let x > --- > xy > 0 be nonnegative real numbers wit%%~+x,%, = 1. Then for all

ke {1,...,N},
X1+ +X% k
S EELY Y P —
1@%[ NG ]—\/Nﬂogzm

Proof. Let L = [log,N]. Then for alli € {1,...,L}, lets =x5 , +---+x5_,, where we adopt the
convention thak; = 0 if j > N. Then

S1+"'+S|_:X%+"-+Xﬁ:17

so certainly there exists are {1,...,L} such thats > 1/L. Fix thati. Then since the;’s are arranged
in nonincreasing order, we have

There are now two cases. Firstki 211 then

Xp+- X | X+ K Kk K
> > —Xoi1 > - > .
1'2%Xk[ Vi ]— kT Vk2T =V 270 =\ NTiog, N

Second, if 271 < kthen

X1+ -+ X% X1+ 4 Xoi1 21 \/T K
> > 12 AT 2 oo -
1@3)&[ Vit } RV \/FX2 = VL= | Nflog,N]

This completes the prodf. O

We now usd_emma4.3to construct am-net.

Theorem 4.4. For all 0 < h < 1, there exists an h-nédy) , ..., |¢w) for CPN-1 of size
M — 4N . ZO(thIogZN)

as well as a quantum algorithm that runs in time polynomialoigM and that prepares the statey)
given i as input.

’One might wonder whether th¢/1/ [log, N7 factor can be eliminated. However, a simple example shows that it can be

improved by at most a constant factor. Suppxse= , /Jiw, wherew = z’j‘:l% ~InN. Thenforallt € {1,...,N}, we have

Xitohx 2
Vi VInN'’
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Proof. Assume without loss of generality thidt= 2" andM = 2™ are both powers of 2, and lgy) be
ann-qubit target state. Then it suffices to show that a quantum algorithm, using

m=log,M = n+2+ 0 (h?2"n?)

bits of classical advice, can prepare a statesuch that(¢|y)| > hin time polynomial inm.

Letk:= LszJ Also, let us expresy) in the computational basis as

and let|z),...,|zy) be an ordering of basis states with the property tbgl > --- > |ag,|. Then by
Lemma4.3, there exists an integéE {1,...,k} such that

|0‘21|+"‘+|O‘z(\> k _ |k
Vi ~ \/ N[log,N] ~ V Nn’

Here we can assume thag,,..., a5 are all nonzero, since otherwise we simply decraasdow let
B; be the element of1,—1,i,—i} that is closest tax;/ |o;|, with ties broken arbitrarily. Then our
approximation tgy) will be the following:

. l L
9) = %i;ﬁz 12) -

To specify|¢), the classical advice just needs to list...,z andf,,...,B,. Sincet <Kk, this requires
at mostk (n+ 2) < mbits. Given the specification, it is clear tHah can be prepared in time polynomial

intn < m. Moreover,
1 ¢ 1 & oy [ Kk
:72 o, > —§ AL >
<¢|W> \ﬁi: BZ.aZ—ﬁi: \@— 2Nn

We can therefore séit:= 2—,'\‘”1 so thatk = 2h?Nn. Hence

m< (n+2) (k+1) = (n+2) (20°Nn+1) = n+2+ 0 (h?2"n?) .

The following is an immediate consequencelbktoreny.4.

Corllary 4.5. Suppose we have an n-qubit quantum oracle U such that either €)W}, for some

|w), or (i) U =1 is the identity. Then given an m-bit classical witness in support of case (i), there
exists a quantum algorithm that verifies the witness usi(ng;\QW/mJr 1) gueries to U, together with
O(n?y/2"/m+ poly(m)) steps of auxiliary computation.

It is natural to ask whether we could construct a smaller exgiiciet, and thereby improve the
query complexity inCorollary4.5from O(n,/2"/m+1) to the optimalO(/2"/m+1). We certainly
believe that this is possible, but it seems to require more complicated techniques from the theory of
sphere coverings.
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5 Group non-membership

The Group Non-Membership (GNM) problem is defined as follows. We are given a finite Groap
subgroupH < G, and an element<€ G. The problem is to decide whethet H.

But how areG, H, andx specified? To abstract away the details of this question, we will use Babai
and Szemédi’'s model ofblack-box group$8]. In this model, we know generators fair, and we know
how to multiply and invert the elements & but we “do not know anything else.” More formally, we
are given access to a group oralewhich represents each elemear#t G by a randomly-chosen label
¢(x) € {0,1}" for somen > log, |G|. We are also given the labels of generat@rs...,h)) for H. We
are promised that every element has a unique label.

Suppose that our quantum computer’s state has the form

D) = wy.z £ (X), £ (Y))]2) ,
|P) vaézay (%), £(¥))12)

where/(x) and/(y) are labels of group elements afg) is a workspace register. Then the ora6le
maps this state to

O|P) = wyz| £ (X) € (xy 1)) [2) .
x,y; %y | (xy™))

Note that if the first register does not contain valid labels of group elements@tbhan behave arbitrar-
ily. Thus, from now on we will ignore labels, and talk directly about the group elements they represent.
Using O, it is easy to see that we can perform group inversion (by putting the identity elenient
the x register) and multiplication (by first inverting then puttingy ! in they register), as well as any
combination of these operations.

We will show that GNM has polynomially-bound€iCMA query complexity. In other words, if
x ¢ H, then Merlin can provide Arthur with a poly)-bit classical witness of that fact, which enables
Arthur to verify it with high probability using polyn) quantum queries to the group orac¢le

To prove this result, we first need to collect various facts from finite group theoryggCall , gk an
efficient generating sdor a finite groupG if (i) k= 0O(log|G|), and (ii) everyx € G is expressible as
ot gﬁ‘ whereey, ..., & € {0,1}. The following lemma was shown by Babai and &sd6].

Lemma 5.1 ([6]). Every finite group G has an efficient generating set.

Given finite group$™ andG, we say that function$,g: Ir — G aree-closeif

Pr [ (x) # g(X)] < €.

xel

Also, recall thatf : ' — G is a homomorphism if (xy) = f (x) f (y) for all x,y € I'. The following two
propositions relate-closeness to homomorphisms.

Proposition 5.2. If two homomorphisms, §: ' — G are(1/2— ¢)-close for anye > 0, then f=g.
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Proof. Fix x € I'; then for ally € T, we havef (x) = f (y) f (y"x) andg(x) = g(y)g(y 'x). By the
union bound,

PrIt@ =gmAfy ™) =gy )] z1-Prif(y) #gm]-Prf(y"x) #g(y %] > 0.
Hence there exists asuch thatf (y) = g(y) and f (y~*x) = g(y~!x). But this implies thatf (x) =
g(x). O

In particular,Propositions.2 implies that if a functionf is 1/5-close to a homomorphism, then it is
1/5-close to ainiguehomomorphism (15 being an arbitrary constant less thaf 1L

Proposition 5.3 (Ben-Or et al. P]). Given finite groupd” and G, a function £ I' — G, and a real
numbere > O, if

Prfixy)#f(x)f(y))<e
x,yel

then f ise-close to a homomorphism.
Together, Propositiorns.2 and5.3 have the following easy corollary.

Corllary 5.4. There is a randomized algorithm which, given finite grolipand G and a function
f: T — G as input, makes ) oracle queries to f, accepts with probabilityf f is a homomorphism,
and rejects with probability at leag/3if f is not1/5-close to a homomorphism. Also, if flig5-close

to some homomorphisrﬁ then there exists a randomized algorithm that, given an inpat"x makes
O(r) oracle queries to f, and outpufs(x) with probability at leastL — 1/2".

In the present context, our algorithms are not limited in space or time, and we can say for simplicity
thatT™ is represented by its entire multiplication table. It is then easy, as the proof will require, to pick
elements of uniformly at random. By contrasg is represented by oracle access, but there will be no
need to choose its elements at random.

Proof. The first algorithm simply choosé3(1) pairsx,y € I' uniformly at random, accepts ff(xy) =
f (x) f (y) for all of them, and rejects otherwise. Liet= O(r). Then the second algorithm chooses
2,...,Z € [ uniformly at random, and outputs the plurality answer among

f(z) f(z7%),..., f (z) f (z'X)
breaking ties arbitrarily. O

It follows from the Classification of Finite Simple Groups that there are at most two finite simple
groups of any particular order (se&J] for example). The following well-known result is a combination
of that fact and of a theorem due to Neuma#§ |

Theorem 5.5. There are N((0%N)°) groups of order N up to isomorphisin.

8The most accurate asymptotic result on the number of groups of Nrdetterms of the prime factorization of, appears
in a paper by Pyber2f].
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Finally, recall that the Hidden Subgroup Problem (HSP) is defined as follows. We are given a fi-
nite groupG, and oracle access to a functibon G — Z. We are promised that there exists a “hidden
subgroup”™™ < G such thatf (x) = f (y) if and only if x andy belong to the same left coset df The
problem is then to output a set of generatorsHoWhether HSP can be solved in quantum polynomial
time, for various non-abelian grouf is one of the most actively studied questions in quantum com-
puting. However, if we only care about query complexity, then Ettinger, Hayer, and Kdjlpfoved
the following useful result.

Theorem 5.6 (fL4]). There is a quantum algorithm such that, given any finite group G as oracular input,
solvesHSPusing onlypolylog(|G|) quantum queries to f (together with a possibly exponential amount
of postprocessing).

We can now prov&heoreml.2 that GNM has polynomially-bounde@CMA query complexity.

Proof of Theoreml.2. Let G be a group of order at most,2and letO be a group oracle that maps each
element ofG to ann-bit label. Also, given (the labels of) group elemenrth;, ..., hn € G, letH be the
subgroup ofG generated byhy, ..., hy). Then the problem is to decidexf¢ H.

In our QCMA protocol for this problem, Merlin’s witness will consist of the following:

e An explicit “model group’T, of order at most 2
o Alist of elementsy, ...,k €', wherek= O(log|l|).
e A corresponding listy, ..., gk € G.

e Anotherlistz Ay,...,An€T.

We should be more explicit about the notion of an “explicit” grdupand about the syntax of
this witness. ByTheorem5.5, there are at most’2Y(") groups of ordefl’| < 2" up to isomorphism.
Since Arthur is allowed unlimited computation and is only restricted in queries, he can construct a
full multiplication table forl" using only the name of its isomorphism type. The multiplication table
is not unigue, because the elementd ofan be permuted; but for instance Arthur could construct
the lexicographically first such table. Since Merlin can anticipate Arthur's constructidn loé can
then refer to elements df using the same construction. He can also refer to elemer@Essifice he
understands the oracle. In conclusion, Merlin can specify the witness using onlynpbls.

If Merlin is honest, then the witness will have the following three properties:

(1) m,...,%is an efficient generating set fbr
(2) z¢ A, whereA is the subgroup of generated by, ..., Am).

(3) There exists an embeddirig ' — G, such that (i)f (%) = gi foralli € {1,...,k}, (ii) f(1;)=h;
forall j € {1,...,m}, and (iii) i‘v(z) =X

9ndeed, forNormal HSP (which is the special case we care about), Hallgren, Russell, and Ta-S8nmafroved this
result, showing how to find a hidden subgroup using @djog|G|) queries tof (again, with exponential postprocessing).
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Suppose for the moment that (1)-(3) all hold. Then there exists an embeEIdTng» G, which maps
the set(y1,..., %) in T to the setg,...,g«) in G. Furthermore, this embedding satisfie@\) = H and
f (z) = x. Sincez¢ A by (2), it follows thatx ¢ H as well, which is what Arthur wanted to check.

So it suffices to verify (1)-(3). In the remainder of the proof, we will explain how to do this using a
possibly exponential amount of computation, but only galyquantum queries to the group orac¢le

First, since properties (1) and (2) only involve the explicit grdupnot the black-box grouf,
Arthur can verify these properties “free of cost.” In other words, regardless of how much computation
he needs, he never has to query the group oracle.

The nontrivial part is to verify (3). It will be convenient to split (3) into the following sub-claims:

(3a) There exists a homomorphisft ' — G such thatF(y.) =g forallie{1,... k}.
(3b) f satisfiesf (z) =xandf (1;) = h; forall j € {1,...,m}.
(3¢) fis injective (i. e. is an embedding in@).

To verify (3a), first Arthur fixes a “canonical representation” of each elerpent. This represen-
tation has the form
Y=H R

where(y, ..., %) is the efficient generating set fér, andey, ..., e € {0,1} are bits depending op
Next he defines a functioh: ' — G by

for all y € . By using the canonical representationypfrthur can evaluaté (y) using at mosk — 1
queries to the group oracl@. Finally Arthur appeals tacCorollary 5.4 If f is not 1/5-close to a
homomorphism, then by usirf@(1) queries tof,, with high probability Arthur can detect thétis not a
homomorphism. In that case Merlin has been caught cheating, so Arthur rejects. On the other hand, if
f is 1/5-close to some homomorphishy then by using (log|'|) queries tof, with high probability
Arthur can “correct’f to . In that case it remains only to check tHaty) = g; for alli € {1,...,k}.

Once Arthur has an efficient procedure for computﬁgthat is, a procedure that involves only
poly(n) queries tadO—he can then verify property (3b) directly.

To verify (3c), Arthur runs the algorithm of Ettinger, Hayer, and KniH] for the Hidden Subgroup
Problem. Notice that, sincé: I — Gis a homomorphism, there must be a “hidden subgrdap?
F—namely the kernel of —such thatf is constant on cosets & and distinct on distinct cosets.
Furthermoref is injective if and only ifK is trivial. But deciding whetheK is trivial is just an instance
of HSP, and can therefore be solved using pojyquantum queries byheorems.6. O

5.1 Computational complexity

Theoreml.2 showed that one can always verify group non-membership using a polynomial-size clas-
sical witness, together with polynomially many quantum queries to the group dratlafortunately,
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while thequerycomplexity is polynomial, theomputationakcomplexity might be exponential. How-
ever, as mentioned iBectionl.l, we conjecture that this shortcomingTfieoreml.2 can be removed,
and that GNM is inQCMA for any group oraclé.

In our QCMA protocol, the main computational problem that needs to be solved is not the general
HSP, but rather the Normal Hidden Subgroup Problem (NHSP)—that is, HSP where the hidden sub-
group is normal. This is because the kernel of a homomorphism is always a normal subgroup. Hallgren,
Russell, and Ta-Shmad. ] showed that NHSP is iBQP for an explicit groupl’, provided that the
quantum Fourier transform ové&rcan be implemented efficiently (and its output can be interpreted).
Furthermore, Moore, Rockmore, and Russ28][showed that many classes of finite gropsave an
explicit modell" = G for which this assumption holds.

Even if NHSP is irBBQP, there are two remaining obstacles to showing that GNM @UMA. First,
we need to be able to verify group non-membership in the explicit model dgroppssibly with the help
of additional classical information from Merlin. Second, we need an efficient algorithm to compute the
function f : ™ — G for everyyel, even thougrfis explicitly defined only on the generatagys. . . , -

In the context of computational complexity (as opposed to query complexity), the notion of an
“explicit group” needs to be better explained. Keeping in mind that this entire section is only one
possible path to showing that GNM is@CMA, here is one definition that captures the ideas of previous
sections.

Definition 5.7. A (polylog-time) explicit sequencef finite groups is a sequendg, such that each
term is a group law on the séf,..., | y|}. Moreover the multiplication functiom,(x,y) = xy and
the inversion functiorin(x) = x~ can both be computed in polynomial time in |6g|. An explicit
sequence igniversalif every finite group is isomorphic to at least ohg

For example, the symmetric group (sequergels explicit, because the standard notation for per-
mutations can be compressed to the integers fronmnl tbikewise the matrix groups Gln, q) form an
explicit sequence in the joint parametera(x)), wherea(x) is a polynomial whose splitting field is,.

But there is no reason to believe that an explicit model of a group is unigue up to polylog-time bijections.
On the contrary, if the discrete logarithm problem is hard, tfig)* andZ/(q—1) are inequivalent
explicit models for isomorphic groups; and both models appear naturally in the obvious explicit model
for matrix groups.

It is not known whether there is a universal explicit sequence of finite groups. The current best
result for solvable groups is quasipolylogarithmic tini][ Theorem5.5 implies that the number of
isomorphism classes of finite groups does not by itself preclude a universal explicit sequence.

If there is a universal sequence of explicit finite groups with the following additional properties, then
following the methods of the previous section, it would show that GNM iQ@MA. (We drop the
formal subscript.)

(i) Eachrl has a list of generatong, ...,k € ' that can be computed i@(polylog|l'|) time. More-
over, given an element € I, there is a polylog algorithm to express it as a (polylogarithmic
length) product of, ..., . It suffices if this algorithm is polylog time on average for randpm
A straight-line program rather than a product also suffices.

(i) NHSP over isin BQP.
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(i) GNM overl isin QCMA.

If the Hallgren-Russell-Ta-Shma algorithm is used for condition (ii), then there should be an al-
gorithm for the quantum Fourier transform over In this case the QFT produces randomly-chosen
characters of the quotient grotig/\ for some normal subgroufy. The characters must also be listed in
some explicit form so that so thAtcan be recognized in polylog time, or at least that the triviality\ of
can be so recognized. (Here, too, “explicit” means that the charactérarmef numbered consecutively
and that the relevant algorithms use this numbering.)

If I is the symmetric groufs,, or an abelian group expressed as a product of cyclic groups, or if it
is a matrix group GIkn, ), then there is an easy generating set that satisfies (i) (exercise for the reader).
In the abelian case, NHSP is BQP by the work of Shor29] and Kitaev R0]; GNM is in P by linear
algebra. Iflr = S,, then NHSP is trivial (since the only normal subgroug\$ and GNM is inP by the
work of Sims B0]. Meanwhile Babai and Szendi [8] showed that if every finite simple group has an
explicit polylogarithmic presentation, then GNM ishP for GL(n,q).

Since the point of condition (ii) is to allow Arthur to confirm Merlin’s claimed homomorphism from
I" to G, a polylogarithmic presentation 6fwould yield an alternative method that does not rely on the
algorithm of Corollarys.4. The status of this problem is that the only unknown case among finite simple
groups is Ree groups of tyB&,(q); all other finite simple groups are known to have such a presentation
[7, 18]. Moreover, it is known that short presentations of a sequéhge .., Ik} of finite simple groups
can be combined to obtain a short presentation for any findtemposed of Iy, ...,k} [7]. However,
there is no known polylog-time algorithm to generate an explicit presentation of each,sex@n given
a presentation of each simglg as input. In summary, the group&,(q) and the extension problem
are the remaining obstructions to a universal, explicit sequence of polylog presentations of finite groups,
which would provide a simple alternative to condition (ii). Regardless, all known QFT algorithms
employ flags of subgroups, which are structures that can also be used to satisfy condition (ii).

Obviously the entire program is far from complete, and each step is open to variations. But we
optimistically conjecture that all steps can be completed for arbitrary finite groups.

6 Mimicking random quantum oracles

We have seen, on the one hand, that there exists a quantum oracle segavdtifigm QCMA; and on
the other hand, that separating these classesctgsaicaloracle seems much more difficult. Together,
these results raise a general question: how much “stronger” are quantum oracles than classical ones?
In particular, are there complexity classgsandD that can be separated by quantum oracles, but such
that separating them by classical oracles is almost as hard as separating them in the unrelativized world?
Whatever the answer, we conjecture lQMA andQCMA arenotexamples of such classes. The reason
is that it seems possible, using only classical oracles, to approximate quantum oracles similar to ones
that would separat@MA from QCMA.

To illustrate, leto be the uniform probability measure ovel:22" unitary diagonal matrices. (In
other words, each diagonal entry Bfc ¢ is a random complex number with norm 1.) Also, tt"
be a tensor product ef Hadamard matrices. Then lgtbe the probability measure ovet 2 2" unitary

THEORY OF COMPUTING, Volume 3 (2007), pp. 129-157 149



S. AARONSON AND G. KUPERBERG

matrices
U = DH®"Dy_1H®"...H®"D{H®"

induced by drawing eadd; independently fronw. In other wordslJ € ¢ is obtained by first applying
a Hadamard gate to each qubit, then a rand®m 2’ diagonal matrix, then Hadamard gates again, then
another random diagonal matrix, and sokdimes.

Note that we can efficiently apply suchUa—at least to polynomially many bits of precision—if
given a classical random oradde To do so, we simply implement the random diagonal mdias

= Y oAy,
xe€{0,1}" xe€{0,1}"

whereA (i, x) is a uniformly randonn-bit integer indexed by andx, andw = €27/2",

Now let u be the uniform probability measure ovel:22" unitary matrices. Ik < 2", theng is
not close tou in variation distance, since the former has oflyk2") degrees of freedom while the
latter has® (k4").1% On the other hand, we conjecture that adrawn fromg, will “look random” to
any polynomial-time algorithm, and that this property can be used to prove a classical oracle separation
betweerQMA andQCMA.

Let us explain what we mean in more detail. Suppose we are given access-guait unitary
oracleU, and want to decide whether

(i) U was drawn uniformly at random (that is, from), or

(i) U was drawn uniformly at random conditioned on there existifgrqubit pure statelsy) and|¢)
such thatJ (|o>®“/zyw>) ~|0)%"2| ).

In case (i), the statelgy) and|¢) will exist only with negligible probability:* It follows that the
above problem is iQMAY —since if case (i) holds, then a succinct quantum proof of that fact is just
|y) itself. We now state three conjectures about this problem, in increasing order of difficulty.

Conjecture 6.1. The above problem is not iQCMAVY. In other words, if case (ii) holds, there is no
succinct classical proof of that fact that can be verified with high probability using(pplyuantum
gueries tdJ.

PresumablyConjectures.1 can be proved using ideas similar to those&erction3. If so, then the
next step is to replace the uniform measurby the “pseudorandom” measuge

10Admittedly, it is still conceivable that the finite-precision versiorgpfs close in variation distance to the finite-precision
version ofu. However, a more sophisticated argument that counts distinguishable unitaries rules out that possibility as well.
indeed, the reason we did not ask for- 1)-qubit statey) and|¢) such that) (|0) |y)) ~ |0) |@) is that such states will
exist (almost) generically. For the choice|gf) gives us 2-1 — 1 independent complex variables, whereas the requirement
thatU (|0) |w)) have the form0) |¢) imposes only 21 constraints. Asking fotn— 2)-qubit stategy) and|e) such that
U (|00) |w)) ~ |00) |@) might suffice (since now we havé 2 — 1 variables versus -2"2 constraints), but we wish to stay
on the safe side.

THEORY OF COMPUTING, Volume 3 (2007), pp. 129-157 150



QUANTUM VS. CLASSICAL PROOFS AND ADVICE

Conjecture 6.2. Suppose that instead of being drawn franthe unitaryU is drawn fromg, for some
k= Q(n). Then the probability that there exist2-qubit statesy) and|¢) such that

U (10)°"21w)) ~ 0)*Y?|g)
is still negligibly small.

Now suppose we want to decide whether

(i) U was drawn fromg, or

(i) U was drawn fromg conditioned on there existingy 2-qubit statesy) and|¢) such that
U (I0)°"21y)) ~10)°"? )

Also, letA be a classical oracle that encodes the diagonal mafiges. , Dy such that
U = DyH®"Dy_1H®".. . H®"D{H*",

If ConjectureB.2is true, then case (ii’) can be verified @MA”. So to obtain a classical oracle separa-
tion betweerQMA andQCMA, the one remaining step would be to prove the following.

Conjecture 6.3. Case (ii") cannot be verified iRCMAA.

6.1 From random oracles to random unitaries

The previous discussion immediately suggests even simpler questions about the ability of classical or-
acles to mimic quantum ones. In particular, coul8@P machine use a classical random oracle to
prepare a uniformly random-qubit pure state? Also, could it use such an oracle to apply a random
n-qubit unitary?

In this section we answer the first question in the affirmative, and present partial results about the
second question. We first need a notion that we call gasrfioothing” of a probability measure.

Definition 6.4. Let ¢ be a probability measure ovéw) € CP?' 1. Then thee-smoothing ofc, or
8¢ (o), is the probability measure obtained by first drawing a stajerom o, and then drawing a state
|@) uniformly at random subject top|y) > 1—¢.

Let u be the uniform measure ovétP?' 1. Also, letQ be a quantum algorithm that queries a
classical oraclé. Suppose that, giverf@s inputQ” outputs the pure state) € CP? 1. Then we say
thatQ “approximates the uniform measure withihif, as we range over uniform randomcC {0,1}",
the induced probability measueeover |y,a) satisfied|S, (o) — u|| <e.

Theorem 6.5. For all polynomials p, there exists a quantum algorithm Q that runs in polynomial time,
and that approximates the uniform measure witBif(".
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Proof Sketch.The algorithmQ is as follows: first prepare a uniform superposition omrdrit strings.
Then, using the classical random oraélas a source of random bits, map this state to

W=z 3 W (Vi-lal0+ad).

/2 x€{0,1}"

where eachy, is essentially a Gaussian random variable. More preciselg(tét= (n+ p(n))%. Then

eachay is drawn independently from a complex Gaussian distribution with mean 0 and variaqgeg,1
with the two technicalities that (19 is rounded tay(n) bits of precision, and (2) the cutoff| < 1 is

imposed. (By a tail bound, with overwhelming probability we will hawg| < 1 for all x anyway.)

Next measure the second register{'# in the standard basis. The outcomé will be observed
with probability Q (1/q(n)). Furthermore, conditioned di) being observed, one can check that the
distribution o over the reduced state of the first register satigfigs,m () — || < 27PM. (We omit
the calculation.) Hence it suffices to repeat the algori@®qg(n)) times. O

Theoremb.5shows that, by using a classical random ordglee can efficiently prepare a uniformly
randomn-qubit state|ya). But what if we want to use a random oracle to apply a uniformly random
n-qubit unitary Up? It is clear that we can do this if we have exponential time: given an orgcle
we simply query an exponentially long pre#X of A, and then treaf* as an explicit description of a
qguantum circuit fotJa. But what if we can make only polynomially many quantum querieSZd\Ve do
not know whether that suffices for applying a random unitary; indeed, we do not even have a conjecture
about this.

What wecan show is that a single quantum query to the classical orAdilmes not suffice for
applying a random unitary. In particular, suppose every entry ofi-gaobit unitary matrixUa is a
degree-1 polynomial in the bits éf(as it must be, itJa is the result of a single quantum query). Then
Ua can assume at most 4distinct values as we range over the possiite as opposed to th@ (szn)
that would be needed to approximate evergubit unitary. To prove this statement, we first need a
lemma about matrices satisfying a certain algebraic relation.

Lemma 6.6. Let Ey,...,Em be nonzero Nk N matrices ovelC, and suppose that; EJ-Jr +E;j EiJr = 0 for
alli # j. Then M< 2N.

Proof. Suppose by contradiction thist > 2N. Let e,(k) be vector inCN corresponding to thi" row of
E.. Then the conditiolE; EJ-Jr +E;E" = 0 implies that

9.l 4. e =0

for all i # j andk, |, where- denotes the complex inner product. Now forialetk (i) be the minimum
k such thae,(k) # 0, and consider the vectoeg(l)),. .. ,e&((M)) € CN. Certainly these vectors are not all

orthogonal—indeed, sindd > 2N, there must exisit# j such that Re{q(k(i)) -eﬁkm)) £ 0. There are
now two cases: ik(i) =Kk(j), then

K1) gl ki) ki) g
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and we are done. On the other hand if) # k(] ), then

IS nonzero. Hencegk(i)) andei(k(j)) must themselves be nonzero. Buk(f) > k(j), then this contradicts
the minimality ofk (i), while if k(i) < k(j) then it contradicts the minimality d&{(j). O

We can now prove the main result.

Theorem 6.7. Let U(X) be an Nx N matrix, every entry of which is a degréesomplex polynomial in
variables X= (xq, ..., %). Suppose UX) is unitary for all X € {0,1}*. Then U(X) can assume at most
4N distinct values as we range overex{0, 1},

Proof. By suitable rotation, we can assume without loss of generalitytik(@l‘) is theN x N identity
|. LetX; be thek-bit string with a ‘1’ only in theit" position, and leE; := U (X;) — 1. Then for alli,

EE = (U (X)-1) (u (>Q)T—|T> —1-UX)-U) +1=-E-E"

Next, for alli # |, let X;; be thek-bit string with *1’s only in theit and jt" positions. Sinc&J (X) is an
affine function ofX, we have

U0G) =U (0) + (U ) —U (0) ) + (U (X)) ~U (0F) ) =1 + B +Ey.
Therefore
0=U (%;)U (X;j)" 1
— (1 +E+E)) (IT+EiT—|—EjT> -
= (EiEiT+ E; Ef) + (Ei E/+E; EiT) + <Ei + EiT) + (E,- + ED
=EE/ +EE".
Here the first line uses unitarity, and the fourth line uses the facﬁhaEiJr = —E EiJr andEj + EJ-Jr =

—E; EJ-T. Lemma6.6 now implies that there can be at mo# BonzeroE;’'s. HenceU (X) can depend
nontrivially on at most Rl bits of X, and can assume at mogt'%alues. O

7 Open problems

The most obvious problems left open by this paper are, first, to prove a classical oracle separation
betweerQMA andQCMA, and second, to prove that the Group Non-Membership problenQ§MA.
We end by listing four other problems.

(1) The clasQMA (2) is defined similarly tdQMA, except that now there are two quantum provers
who are guaranteed to share no entanglement. Is there a quantum oracle relative to which
QMA (2) # QMA?
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(2) Is there a quantum oracle relative to whiBRP /qpoly ¢ QMA /poly? This would show that the
containmenBQP /gpoly C PP /poly proved in P] is in some sense close to optimal.

(3) Can we use the ideas 8fction6 to give a classical oracle relative to whiBQP ¢ PH? What
about a classical oracle relative to whisdP C BQP butPH ¢ BQP?'?

(4) Is there a polynomial-time quantum oracle algorit@msuch that for everp-qubit unitary trans-
formationU, there exists a classical oradkesuch thatQ” approximately implementd ? Alter-
natively, would any such algorithm require more than galyqueries toA?'3
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