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D. JANZING AND P. WOCJAN

1 Introduction

It is still not understood well enough which problems are tractable for quantum computers. It is there-
fore desirable to better understand the class of problems which can be solved efficiently on a quantum
computer. In quantum complexity theory, this class is referred to as BQP. Meanwhile, some character-
izations of BQP are knownlp, 24, 2, 25]. Strictly speaking, these are characterizations of the class
PromiseBQP instead of BQP, a difference that is often ignored in the literatur8ésgen?2 for clarify-

ing remarks). The class BQP, like its classical analogue BPP, is not known to have complete problems.
Here we present a new characterization of PromiseBQP which is related to the computation of powers
of large matrices.

It should not be too surprising that computational problems can be formulated in terms of “large”
matrices. For example, the transformations of a quantum computer can be represented by multiplication
of matrices of a certain type. However the matrix problems derived from this representation would
usually not be very natural in classical terms (they are, of course, natural, as physical questions about
the behavior of quantum systems). For instance, the problem of estimating an entry of products of
unitary matrices which are given by a tensor embedding of low-dimensional unitaries, is PromiseBQP-
complete, but it is not obvious where problems of this nature could arise in real-life applications referring
to the macroscopic world.

It is known that Hamiltonians with finite range interactions can generate sufficiently complex dy-
namics that can serve as autonomous programmable quantum comfb&idrg.[ Therefore, it is not
unexpected that problems related to spectra and eigenvectors of self-adjoint operators lead to compu-
tationally hard problems. One might think that many of such problems could be solved efficiently on
a quantum computer. However, results proving that questions pertaining to the minimal eigenvalue of
Hamiltonians are PromiseQMA-complets] 17, 21] demonstrate that efficient algorithms are unlikely
to exist for this problem.

The situation changes dramatically when we do not aim at deciding whether some Hamilionian
has an eigenvalue below a certain bound but only whether a givergjdtas a considerable component
in the eigenspace corresponding to a particular eigenvaltie dtis problem can be answered by (1)
applyingH-measurements tay) several times and (2) statistically evaluating the obtained samples. It
has been shown ir2f] that measurements of so-calllkdocal operators,applied to a basis state, solve
all problems in PromiseBQP. This proves that some class of problems concerning the spectral measure
of k-local self-adjoint operators associated with a given state characterize the class of problems that can
be solved efficiently on a quantum computer. Unfortunately, the requireméwiboality restricts the
applicability of these results since it is not clear whiedecal matrices occur apart from in the study of
qguantum systems. For this reason we have considered sparse matrices that do not requikdaath a
structure and show that a very natural problem, namely the computation of diagonal entries of their
powers, characterizes the complexity class PromiseBQP.

The paper is organized as follows. $ection2 we define the complexity classes PromiseBQP and
BQP and clarify the difference. I8ection3 we review known characterization of PromiseBQP. In
Section4 we define formally the problem of estimating diagonal entries argkiction5 we prove that
this problem can be solved efficiently on a quantum computer. To this end, we use the quantum phase

1An operator om qubits is calleck-local if it can be decomposed into a sum of terms that act on at kapsbits [18]
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estimation algorithm to implement a measurement of the observable defined by the sparse matrix. To do
this it is necessary that the time evolution defined by the sparse matrix can be implemented efficiently.

Since the diagonal entries of timth powers are theth statistical moments of the spectral measure,

we can estimate them after polynomially many measurements provided that the accuracy is sufficiently
high. An appropriate decision problem, namely to decide whether this statistical moment is greater than

a certain bound or smaller than another bound (giveptbmisethat either of these alternatives is true),

is therefore in PromiseBQP.

In Section6 we show that diagonal entry estimation encompasses PromiseBQP. The proof relies
on an encoding of the quantum circuit which solves the computational problem considered into a sparse
self-adjoint matrix such that the spectral measure (and hence an appropriately chosen statistical moment)
corresponding to the initial state depends on the solutioBekition7 we show that the problem remains
PromiseBQP-hard if restricted to matrices with entriels 0, and 1. The idea is that the gates, which
are encoded into the constructed Hamiltonian, are not required to be unitary, even though the circuit
that then realizes the corresponding measurement is certainly unitary. This fact could be interesting in
its own right. For example, it could be possible that there are even more general ways of simulating
non-unitary circuits by encoding them into self-adjoint operators. In this context, it would be interesting
to clarify the relation to other measurement based schemes of compugjainJ).

2 Complexity theoretic clarifications: BQP and PromiseBQP

Certain complexity theoretic issues related to BQP are often blurred in the literature; therefore some
clarifications seem to be in order. BQP is a class of languages. But in the literature, when people
talk about BQP they often mean the promise-problem version (PromiseBQP). Exactly like with BPP
and AM, BQP itself is not known to have complete problems, RPraimiseBQPhas complete promise
problems, and that is adequate for most purposes.

The notion of promise problems was introduced and initially studiedL@h [ Oded Goldreich’s
article [12] provides a survey of the most important applications that this notion has found in complex-
ity theory. Most importantly, the author of this article argues that in some situations the use of promise
problems is indispensable. These include the notion of “unique solutions” (e. g. unique-SAT), the formu-
lation of “gap problems” (e. g. hardness of approximation), the identification of complete problems (e. g.
for the class Statistical Zero Knowledge), the indication of separations between certain computational
resources (e. g. the study of circuit complexity, derandomization, PCP and zero knowledge).

We refer the reader to this article for more details on promise problems and their applications. Our
definition of PromiseBQPFs modeled after Oded Goldreich’s definition BfomiseBPPn [12, Defi-
nition 1.2]. We use his definition dfarp-reductionamong promise problem42, Definition 1.3] for
reductions among problems in PromiseBQP.

Definition 2.1. A promise problenTl is a pair of non-intersecting sets, denot@tles, Nno), i. €.,
Myes,Mno C {0,1}* andMyesNMyo = 0. The seflyesUMo is called thepromise

Standard “language recognition” problems are cast as the special case in which that promise is the
set of all strings, i. e[lyesUMno = {0,1}*. In this case we say that tipeomise is trivial The standard
definitions of complexity classes (i. e., classes of languages) extend naturally to promise problems. Then
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the set of NO-instances is not necessarily the complement of the set of YES-instances. Instead, the
requirement is only that these two sets are non-intersecting. Our definition of PromiseBQP is as follows:

Definition 2.2. PromiseBQP is the class of promise probleffises, Mno) that can be solved by a
uniform family? of quantum circuits. More precisely, it is required that there is a uniform family of
quantum circuitsy; acting on polyr) qubits that decide if a string of lengthr is a YES-instance or
NO-instance in the following sense. The applicatiolY;ab the computational basis staxe0) produces

the state

Y%, 0) = ax,0[0) @ | 0) + ax.1]1) @ | Wi 1) (2.1)

such that
1. for everyx € Mygs it holds thatjox 1|2 > 2/3 and
2. for everyx € Mygs it holds that|ay 1|? < 1/3.

Equation 2.1) has to be read as follows. The input stringletermines the first bits. Furthermore{
additional ancilla bits are initialized to 0. Afté&f has been applied we interpret the first qubit as the
relevant output and the remaining- £ — 1 output values are irrelevant. The size of the ancilla register
is polynomial inr.

Note that nothing is required in the definition of PromiseBQP with respect to inputs which violate
the promise. For example, the problem of deciding whether a string is contained in the promise could
be computationally much harder than the promise problem itself. It is clear that the promise on the
probability gap between the instances YES and NO is necessary to decide the problem by measuring the
output qubit. This motivates why promise problems appear quite naturally. We are now able to define
BQP:

Definition 2.3. The class BQP is the subclass of PromiseBQP consisting of those promise problems
for which the promise is trivial, i. e., is equal to the set of all strig@sl}*. In this case, the language
L =Mygs is said to be a BQP-language.

One should emphasize that a language is in BQP if and only if the corresponding decision problem is
in PromiseBQP since the notion of BQP-language implies that its whole complement is a NO-instance.

Definition 2.4. The promise problerfil = (Mygs, Mno) is Karp-reducibleto the promise problel’ =
(M{gs, Myo) if there exists a polynomial-time computable functibrfi. e., an efficiently computable
classical function) such that

1. for everyx € MNygs it holds thatf (x) € M{g and

2. for everyx € Mo it holds thatf (x) € M.

2By “uniform circuit” we mean that there exists a polynomial time classical algorithm that generates the sequence of
quantum gates for every desired input length.
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3 Prior work on PromiseBQP-complete and PromiseBQP-hard problems

A simple observation showing that PromiseBQP-complete problems exist at all is the following. Any
computational model that is universal for quantum computing immediately leads to a complete problem
for PromiseBQP; namely, the problem of simulating that model and determining the output. For exam-
ple, the problem of estimating entries of unitary matrices specified by quantum circuits can clearly be
formulated as such a PromiseBQP-complete decision problem. So one can interpret the results proving
that models such as adiabatic, topological, or one-way quantum computing are universal to be proving
that the associated simulation problems are PromiseBQP-complete. However, such “quantum” problems
do not really help us in understanding the difference between quantum and classical computation. An
important challenge for complexity theory is therefore to construct problems that seem as classical as
possible but characterize nevertheless the powguahtumcomputation.

Referencel9] characterizes the class PromiseBQP by a combinatorial problem, namely the problem
to evaluate the so-called quadratically signed weight enumerators. They are given by

S(A,B,x,y) = % (—1)P"Boyblyn—Ibl
b,AB=0

whereA andB are Q1 matrices withB of dimensionn by n andA of dimensionm by n. The variable
b in the sum ranges over column vectors of dimensidraving entries 0L, bT denotes the transpose
of b, |b| is the Hamming weight ob and all calculations involving\, B, andb are modulo 2. Let
Iwtr (A) denote the lower triangular part Af Then it is PromiseBQP-complete to determine the sign of
S(A lwtr(A), k, ¢) for integersk, ¢ with a matrix A whose diagonal entries are 1. Here we are given the
promise that the modulus &A, Iwtr(A),k, ¢) is at least(k? + ¢2)"/2/2. Since all matrices and vectors
have entries (., this problem can certainly be considered ataasicalproblem.

Another PromiseBQP-complete problem could be formulated in the context of knot theof]. In [
it was shown that the quantum computer can efficiently provide estimations for the values of the Jones
polynomial when evaluated at roots of unity. B¥[ 2] it was shown that this evaluation can solve every
problem in PromiseBQP. The idea is, roughly speaking, that the sequence of gates can be translated into
sequences of braids whose unitary representations correspond directly to the gates. These links between
guantum computing and knot theory are quite plausible when taking into account that the latter has been
successfully applied to topological quantum field theories and that quantum computers can be useful to
simulate topological field theoried ]].

The complexity of certain quantum measurements was considerédlifisge also 23]). It was
shown that sampling from the spectral measure of 4-lnaglbit observables can solve all problems in
PromiseBQP provided that every measurement precision being inverse polynomialife achieved.
Even though this problem is completely quantum, it provided one of the key idea of this paper. The
essential insight is that measurement for appropriate observables, when applied to basis states, can solve
problems in PromiseBQP. We convert the problen2&f [nto a quantum-free problem by (1) replacing
4-local operators with general sparse matrices and (2) by replacing direct statements on the distribution
of measurement outcomes with statements on the statistical moments of this probability measure. This
simplifies the problem considerably since these moments are directly given by diagonal entries of powers
of the matrix considered.
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4 Definition of diagonal entry estimation

In this section, we formulate a quantum-free PromiseBQP-complete problem. Before we define the
problem “diagonal entry estimation” we introduce the notion of sparse matrices and the spectral measure.
Here we call alN x N matrix A row-sparse (column-sparse) if it has no more thanpolylog(N) non-
zero entries in each row (column) and there is an efficiently computable funttibat specifies for
a given row (column) the non-zero entries and their positions (comgar® p]). Here and in the
following the term “efficiency” is used in the sense that the computation time is polylogarithmic in

Let A be self-adjoint with spectral decomposition

A:;AQA, (4.1)

and|y) be some normalized vector of silke The spectral measure inducedAgnd|y) is a probability
distribution on the spectrum @ such that the eigenvalie occurs with probability|Q; |w)||2. Noting

that A" = 3, A™Q,, we infer the following fact which will be repeatedly used in the sequel. The
expected value oA™ in the statgy) is given by

(WA ) = 5 A™(w|Qu v, (4.2)
A

i. e., by themth statistical moment of the spectral measure. The operator iafjnof A is given by the
maximum over al|A| in Equation 4.1). In [25], eigenvalue sampling is defined to be a quantum process
that allows us to sample from a probability distribution that coincides with the spectral measure induced
by A and|y). Throughout the paper we refer to such a procedureessuringhe observablé in the
state|y). Now we are ready to formalize the problem of estimating diagonal entries of powers of sparse
symmetric matrices.

Definition 4.1. An instance of the promise problem “diagonal entry estimation” is specified by a tuple
(Ajb,m, j,€,9), whereA is a symmetric sparse matrix of sidéx N with real entriesb is an upper
bound on the nornAj|, m = polylog(N) is a positive integerj € [1,...,N], € = 1/polylog(N), and
ge [—b™ bmM).

The task is to decide if such a tupl&,b,m, j,&,9) is an element oflygs or an element ofyo.
These instances are defined as follows:

1. (A)b,m,j,e,9) is a YES-instance iff
(A™)jj > g+eb™,
2. (A)b,m, j,e,0) is a NO-instance iff
(AM;j; <g—eb™.
The promise is that only tuples I = MygsU Mo are considered. Any answer is acceptable when the
entry is not between the stated bounds.

Recall thatN is exponential in the input length and the description of the entridsisfgiven by a
function that can be computed with running timedfpolylog(N)).
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Special instances of this kind (matrices with entriek)@rise in graph theory. Létbe the adjacency
matrix of a graph withN vertices and degree bounded from abovesbyhen the diagonal entr§A™);;
of the mth power ofA is equal to the number of walks of lengtinthat start and end at the vertgx
Here sparseness means that for every node the number of neighbors is polynomial and that there is an
efficiently computable function specifying the set of neighbors for each node. A natural setting satisfying
these requirements is the following. Let the nodes represent the set of strings ofeagibg, N|
over some finite alphabdiy, ..., ax} with constant. The edges are implicitly specified by a given
equivalence relation on substrings of lenptbr some constaritin the sense that two strings are adjacent
if they can be obtained from each other by replacing one substring with an equivalent one. There is
certainly no promise that would here occur in a natural way. However, the promise is only needed to
formulate adecisionproblem. Even without the promise, we can efficiergtimatethe number of
walks up to an accuracy that is specified by the gap in the promise decision problem.

The main contribution of this paper is the proof that diagonal entry estimation is PromiseBQP-
complete.

Theorem 4.2. The problem “diagonal entry estimation” is PromiseBQP-complete.

We emphasize that this result also provides an understanding of the complexity class BQP, not only
PromiseBQP because of the following observation:

Corllary 4.3. Alanguage L belongs to BQP if and only if L is Karp-reducible to the problem “diagonal
entry estimation.” Here Karp-reduction is meant in the sense of reduction between promise problems; a
language recognition problem is simply a promise problem with trivial promise.

First, we prove that the problem “diagonal entry estimation” is in PromiseBQP. Second, we prove
that it is PromiseBQP-hard.

It is important to note that the scale on which the estimation has reasonable precision is given by
b™. If the a priori known bound on the norm is, for instanbe,= 2b instead ofb, then the accuracy is
changed by the exponential factd?. 2ur results show that quantum computation outperforms classical
computation in estimating the diagonal entries (provided that PromiseBy8miseBPP). But one has
to be very careful on which scale this result remains true.

5 Diagonal entry estimation is in PromiseBQP

We now describe how to construct a circuit that solves diagonal entry estimation. Without loss of
generality we may assuniie= 1 and rescale the measurement results later. The main idea is as follows.
We measure the observal#ien the statdj). We obtain an eigenvaluk as result and compu#™. The

average over these values over large sampling converges to the desired entry. The measurement is done
by (1) considerindA as a Hamiltonian of a quantum system and simulating the corresponding dynamics

Ui = exp(—iAt) and (2) applying the phase estimation algorithrdtoThe proof that this works follows

from a careful analysis of possible error sources. These are

1. errors due to the statistical nature of the phase estimation algorithm,

2. statistical errors due to estimation of the expected value from the empirical mean, and
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3. errors caused by the imperfect simulation of the Hamiltonian time evolution.

We show that all these errors can be made sufficiently small with polynomial resources only.

5.1 Inaccuracies of phase estimation

We embedA into the Hilbert space afi qubits, wheren = [log, N]. Let us first assume that the unitary
matrixU := exp(iA) can be implemented exactly. We apply the phase estimation procedure which works
as follows p0]. We start by addingp ancillas to the qubits on whidd acts. The idea is to control the
implementation of the 2h power ofU by the/th control qubit. More precisely, we have the controlled
gates

W, :=10)(0]) @ 1+]1)(1| 2 U?

where the superscrigt) indicates that the projectot) (0] and |1)(1| act on thelth control qubit,
respectively. Note that the decompositionWf into elementary gates is obtained by replacing each
elementary gate in the circuit implementibgwith a corresponding controlled gate. SimilaNy; is
realized by applying the quantum circuit implementing the corresponding conttdigate 2 times.
SetW :=WW,---W,. The phase estimation circuit consists of applying Hadamard gates on all control
qubits, the circuitV, and the inverse Fourier transform on the control qubits. The desired a&ueb-
tained by measuring the control qubits in the computational basisyldie an arbitrary eigenvector of

U with unknown eigenvalue’?*® for some phase < [0,1). In order to ensure that the phase estimation
algorithm outputs a random valaes {0, ...,2P — 1} such that

Pr(lp—a/2°|<n)>1-6, (5.1)
for some6,n > 0 it is sufficient R0] to set

p:= [log(1/n)] + [log (2+ (1/(20))].

Let |y) be an eigenvector oA with unknown eigenvalué € [—1,1]. In order to determiné
approximately using the outconeein a phase estimation with = exp(iA) we proceed as follows.
First, we have to take into account that> 1/2 corresponds to negative values Second, we have to
consider that the scaling differs by the factar. 2Finally, we may use the additional information that
notallA in [—x, ) are possible, but only those r1, 1]. All outputs that would actually correspond to
eigenvalues. in [1,n] and[—r, —1) are therefore interpreted asl or —1, respectively. Therefore, we
compute valueg from the output by

a(2m/2P) for 0<a<2P/(2rm),
. 1 for 2P/(2m) <a<2P/2,
—) -1 for 2P/2<a<2P—2P/(2m),

a(2m/2P)—2x for 2P—2P/(27) <a< 2P.

This defines the random variabfewhose valueg are approximations fak that satisfy the following
error bound:
Pr(|A —Z| <27m) >1-6.
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This bound follows from Equatiorb(1) by appropriate rescaling (note that our reinterpretation of values
in [-m,—1] and[1, ) explained above can only decrease the error unless it was already greater than
m —1). Consequently, we have for every eigenstate of A with eigenvaluél; the statement

|E‘W>(Zm)—ﬂ.im| <206+2mmn, (5.2)

whereE,,,(Z™) denotes the expected valueZ in the statdy;). The first term on the right-hand side
corresponds to the unlikely case that the measurement outcome deviates by morertHaon? the
true value. Since we do not have outcorzesnaller than—1 or greater than 1 the maximal error is at
most 2. This leads to the error terrd.2The second term corresponds to the dase z| < 2zn, which
implies|4™ —Z"| < (2zn)mbecausél,z € [—-1,+1].

We make the error in Equatiob.@) smaller thare /3 by choosing the parameteésandn such that
0 < £/12 andn < €/(12xm). The number of control qubits can be chosen to be

p:=2[log((48m)/e)]. (5.3)

This is sufficient since

[log(1/n)]+[log(2+(1/(26)) < 2[log ((48m)/e)]. (5.4)

We decomposéj) into A-eigenstates
=5 Bilw).
|

and obtain the statement
Epy(Z™) =Y IBI*Ey (2™

by linearity arguments and

(A = (HA™ ) = 3 (v (wl DA™ = 5 |BI2AM.
I |
Using the triangle inequality and the fact that the right-hand side of Equdiiéni¢ smaller thare/3
for eachi we obtain
By (Z™) — (AT jj| < /3. (5.5)

5.2 Errors caused by finite sampling

Now we sample the measuremérimes in order to estimate the expected vaiye(Z™). Since we will
later also consider the simulation error we want to estintat8 ;; up to an error of 2/3. To achieve
this, it is sufficient to estimate,;, (Z™) up to an error ot/3.
Let Z™ denote the average value of the random vari@dBlafter sampling times. Since the values
of Z™M are between-1 and 1 we can give an upper bound for the probability that the average is not
€/3-close to the expected value. By Hoeffding’s inequality, [Theorem 2] we get

Pr(}ﬁ—Em(zm)\ > %) < 2exp(_122k>.
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In summary, we have shown fbr= 1 that we can distinguish between the two casd&dfinition4.1
with exponentially small error probability. For# 1 we have to rescale the inaccuracy of the estimation
by b™. The whole procedure including repeated measurements and averaging can certainly be performed
by a single quantum circu¥ in the sense dbefinition 2.2

5.3 Inaccuracies of the simulation oexp(—iAt)

We now take into account thdt= exp(iA) cannot be implemented exactly. Itis known that the dynamics
generated byA can be simulated efficiently i\ is sparse4, 8, 6]. More precisely, for eachwe can
construct a circul¥ which is §-close toU; = exp(—iAt) with respect to the operator norm such that the
required number of gates increases only polynomially in the parameterand 1/8. We analyze the
error resulting from usiny instead oJ, where||V —U|| < 4.

The phase estimation contain&2 — 1 copies of the controlledl- gate. Therefore the circuly,
implementing the phase estimation procedure Witinstead ofU deviates fromFy by at most 21§
with respect to the operator norm, that|igy — Fy| < 2P*13.

Let g andd denote the probability distributions of outcomes when measuring the control register
after the phase estimation procedure has been implemente¥ witdU, respectively. Thé;- distance
betweerg andd’is then defined by

la—dl= Y  la@-Ga)

ac{0,.2r—1}

whereq(a) andd{a) denote the probabilities of obtaining the outcoasccording to the measugeand
g, respectively. To upper bounjd— §||1 we define a functiosby s(a) := 1 if gq(a) > dands(a) := -1
otherwise. LeQ be the observable defined by measuring the ancillas and ap@yintpe outcome.
Then we can writé|q — §||1 as a difference of expected values:

(WIFIQR) — RJQR/|w) < 2Ry — R[] Q|| < 2P+25.

This implies that the corresponding expected valueg™¢an differ by at most 22§ because takes
values only in the interval-1,1]. We choose the simulation accuracy such that £/(3-2°+2) and
obtain an additional error term of at mast3 in Equation §.5). Using that we have chosgmas in
Equation 6.3) we obtain thats € O(e3nv).

Putting everything together we obtain a total error of at ngogturthermore, this can be achieved
by using time and space resources which are polynomialim and 1/¢. This completes the proof that
diagonal entry estimation is in PromiseBQP.

It should be mentioned that off-diagonal entr{@g");; can also be estimated efficiently on the same
scale using superpositionis + | j) since the valuesi|A™|j) can be expressed in terms of differences
of the statistical moments of the spectral measure induced by those states. The scale on which the
estimation can be done efficiently is then also givereb{' with an appropriately modified which is
still inverse polynomial im. However, since PromiseBQP-hardness requires only diagonal entries we
have focused our attention on the latter.

It is natural to ask whether the above result extends to non-symmetric matrices (note that the gen-
eralization to complex-valued hermitian matrices is obvious since we did not make use of the fact that
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the entries are real). The central part of the algorithm is a measurement of “the obsé&Valde an
procedure that samples from its spectral measure. The most general set of matrices that define a spectral
measure is the set of normal operators, i. e., operators that commute with their adjoints. If we decompose
normal matrices into
1 t _ 1 t

ReA) = é(A+A ) and ImA) := E(A_A ),
the “real” and the “imaginary part” commute. We can thus implement both corresponding measurement
procedures (by quantum phase estimation as above) one after awiitiert preparing a new state.
Then the output paifu, v) defines a complex number= p +iv which is close to an eigenvalue Af
Because of inaccuracies in the measurement procedure we may obtain valueswijtA||. In analogy
to the methods above we would then instead take the closest value on the circle of||Rdfiubhis
ensures that we keep the estimation errors, again, small compdfad™o

6 Diagonal entry estimation is PromiseBQP-hard

To show that the estimation of diagonal entries can solve all problems in PromiseBQP we prove that a
particular instance is already PromiseBQP-hard. It is given by the problem to determine the sign of the
diagonal entry when an appropriate lower bound on its modulus is provided by the promise.

We assume that we are given a quantum cirguithat is able to decide whether a strirgs in
YES or NO in the sense d@efinition 2.2 UsingY; we construct a self-adjoint operatarsuch that the
corresponding spectral measure induced by an appropriate initial state depends on xwisath®ES
or in NO. Note that the proofs for PromiseQMA-completeness of eigenvalue problems for Hamiltonians
have already used this idea to construct a self-adjoint operator whose spectral properties encode a given
guantum circuit 18, 17, 21]. In these constructions, thexistencef eigenvalues of a given Hamiltonian
depends on whether or not an input state exists that is accepted by a certain circuit. In PromiseBQP, the
problem is only to decide whethegasenstate is accepted and not whether such a state exists. Likewise,
the problem is not to decide whether an eigenvalue of the constructed obsexxiztdevhich lies in a
certain interval. Instead, it refers only to the spectral measure inducedibgrastate. This difference
changes the complexity from PromiseQMA to PromiseBQP.

For these reasons, our construction is base®b6hgnd not on work related to PromiseQMA. Ref-
erence 25 established the PromiseBQP-hardness of approxilkéteal measurements. This result
relied on the ideas in2B] where the PSPACE-hardnesslefocal measurements was proved provided
that exponentially small error is desired.

However, our description below will only at one point refer to these results since the observable we
construct here is only required to be sparse, in contrast t&-theality assumed ing5, 23]. In some
analogy to 16, 25] we construct a circuit) that is obtained fronY; as follows: First, apply the circuit
Y,. Second, apply @,-gate. Third, implemenY,”. The resulting circuit) is shown inFigurel. We
denote the dimension of the Hilbert spatects on byN.

LetU be generated by a concatenation of i@lementary gatedy,...,Uy_1. The results in 3]
imply that we can simulatg by gates having only real entries. To this end, a qubit is added that is used
to represent the real and imaginary part of the quantum state. Then the real circuit reproduces exactly the
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X1, .., %) 0z

0,...,0)

Figure 1:CircuitU constructed from the original circit. Whenever the answer to the BQP problem is no, the
output state ol is close to the input state, 0) = |xq,...,X%,0,...,0). Otherwise, the state, 0) is only restored
after applyingJ twice.

output probabilities of the original circuit. We assume furthermorehhat odd, which is automatically
satisfied if we decomposé' in analogy toY; and implement a,-gate betweelY, andY,". We define

the unitary matrix
M—1

W:=S [+ oV, 6.1
gol ) (€l @Uy (6.1)

acting onCM @ CN. Here thet sign in the index has always to be read moddloWe obtain

M-1
wM — /z 10) (€| @Upim ---Upy1Up.
/=0

BecausdJ? = 1 we have(WM)2 = 1. Thus,WM can only have the eigenvaluesl. This defines a
decomposition of the spad@ @ CN into symmetric and antisymmetily-invariant subspace®™ and
87, respectively with corresponding projectors

Q* = %(HEWM).
In the following we use the definitiofsy) := |0) ® |x,0) for the initial state and restrict attention to the
span of the orbit

{wf|sx>} with £ € . (6.2)

Moreover, we use the abbreviationg = ox o andag = o 1. We consider first the two extreme cases
|ai| = 0 and|oy| = 1. If |ou| = O the orbit 6.2) is M-periodic and the action & is isomorphic to the
action of a cyclic shift irM dimensions, i. e., the mapping — |(¢+ 1) mod M), where|¢) corresponds
toW’|s,) with £ =0,1,...,M — 1.

If |az| = 1 the action ofW corresponds to a cyclic shift with an additional phasg, i.e., the
mapping|¢) — |¢+1) for ¢ =0,1,...,M —2 and|M — 1) — —|0). In the first case, the stal®) induces
a spectral measuf®? being equal to the uniform distribution on thth roots of unity, i. e., the values
exp(—imr2¢/M) for £ =0,....,M — 1. In the second casts) induces the measuRY being equal to
the uniform distribution on the values expin (2¢ 4 1)/M) for £ =0,...,M — 1. We observe thaR!
andR(% coincide up to a reflection of the real axis in the complex plane.

In the general case, the orbit defines &-@imensional space whose orthonormal basis vectors are
obtained by renormalizing the vectors

WQ*|s) and W'Q|s) with/=0,1,...,M—1.
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We obtain then a convex sumBf® andR as spectral measures inducedyand|s,). The following
calculation shows thaty|? and|o,|? define the corresponding weights:

1 1 1
([Q"[s0) = §<S<\1+WM|Sx> =5 01+U]0,x) = 5(1+ (%,01%62Y]0,x)) = |ao]?,

where the last equality follows easily by replacivigx,0) and its adjoint with the expression in Equa-
tion (2.1 and its adjoint. Thus, we obtain the spectral measure

R:=|o|?RO + | oy |?RY

We define the self-adjoint operator
1

SW +wh. (6.3)
The support of the spectral measure correspondidgisodirectly given by the real part of the support
of R. To obtain the corresponding probabilities one has to take into account that in many cases two
different eigenvalues o lead to the same eigenvalue/f

To calculate the distribution of outcomes fsmeasurements we observe tR4 leads to a distri-
butionP® on the(M — 1) /2 eigenvalues

A=

A;O):cos% for¢=0,...,(M—-1)/2

with probabilitiesP := 1/M andP” := 2/M for £ > 1. Likewise,R? leads to a distributioP®) on
the(M —-1)/2 values

n(20+1)

AY =cos for¢=0,...,(M—1)/2

with probabllltlesP((M) y2=1/M andP!) = 2/M for £ < (M—1)/2. As it was true foR® andR®),

the measureB(® andP® coincide up to a reflection. )
We now set j) := |sy), i. e., the input state is considered as ftiebasis vector o£™ @ CN. Then
the diagonal entryA™);; coincides with thenth moment of the spectral measure:

(A = (ilA™]) = Zﬂth
whereA runs over all eigenvalues of the restrictionffo the smallesf-invariant subspace containing

|j), andP(A4) denotes its probability according to the spectral measure correspondingSimce the
latter is a convex sum d¥® andPM) we may write(A™);; as the convex sum

(Am)” _ (1_|a1|2)2(l[(0)>ml:}(0)+|al|2; (Ag(l))mpl(l)
= (1—|ouf*)Eo+|0on[*Es. (6.4)

The valuessp andE; can be considered as theh statistical moments of random variables|er, 1]
whose distributions are given B9 andP), respectively.
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In order to see how the valyd™);; changes witho:| we observe that,

Eo= (M/_Z,lj/z (%0)) mPg(O) >R+ (71<(3|)71)/2> "= % + (lé&ll)/Z) "

Here we have used thé.éo) = 1 and that the eigenvalues are numbered in a decreasing order. Thus,
Am-1),2 is the smallest one. Because of the reflection symmetry of the measures we;havek,.

Now we choosen sufficiently large such that the ter(ﬁ((ﬁ)_l)/z)m is negligible compared to/M since
we have therp — E; ~ 2/M which is a sufficient difference for our purpose.

In order to achieve this we sgt:= M3. We have
2
(0) . T T
A’(M—l)/Z = —COS(?T/M) > -1+ W — W > —

where the last inequality holds for sufficiently laye Due to

4 2

T

14 =
+4|\/|2’

2

. T M2_
am (=) =¢

g2
4

we conclude that
M3 _ (o Z2M
(cogm/M))™ < (e 4)",
and hence 1 , 3
Bo>y— @) >m
where we have, again, assumidto be sufficiently large. To see ho@A™);; changes withoy| we
recall

(6.5)

(A™)j; = (1—|oa|*)Eo+ | |*E1 = (1—2|on|?) Eo,

by Equation 6.4) and the reflection symmetry. Using the worst cagas’ = 1/3 for x € MNyo and
|aa|? = 2/3 for x € Mygs we obtain

1 1
(AMjj =3B and (AT} = —3Eo.

UsingEp > 3/(4M) from Equation 6.5 we obtain

1
Am -
( )JJ > AM )
if the answer is no and 1
Am .. _
( )JJ < AM

otherwise. Setting := 0 (seeDefinition 4.1) we may define := 1/(4M). Then the diagonal entry is
greater tham+ ¢ if x € Nygs and smaller thag — ¢ if x € Myp. The construction oA as the real part of

a unitary matrix ensures thag#\|| < 1=:b. This shows that we can find an inverse polynomial accuracy
€ such that an estimation of the diagonal entry up to an erb8rallows us to check whethere Mygs.
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It remains to show thaA is row-sparse and column-sparse in the sense defin8ddtion4. First
we observe the following. For a gdte that only acts ork qubits non-trivially, the matrix describird,
contains only non-zero entriéb|U,|b’) for those paird,b’ of binary words for whictb andb’ differ at
most at thes& positions. For a giveb, one can efficiently check which one of these possiblertries
is non-zero and similarly for a giveni. Hence we have shown sparsenesd oflt is easy to show that
sparseness is also true faras defined in Equatior6(2) using the gated, and also forA as defined in
Equation 6.3).

Note that estimating of off-diagonal entries only is also PromiseBQP-hard. This can be seen by
replacing the original matriA with

vene (33 12).

which has obviously the same normAsince the right-hand matrix is an orthogonal projector. Then

we have 12 12
(K)"=A"e < 12 1/2 > '

We obtain
(AM)jj = 2(j,0[(A)M},1),

where we have used the short-hand notatjon := |j) ® |i) for i = 0,1. Hence we have reproduced the
diagonal entry oA™ by an off-diagonal entry ofA")™.

7 Restriction to matrices with entries 0,1,-1

So far we have allowed for general real-valued matrix entries. We may strengthen the result of the
preceding section in the sense that diagonal entry estimation remains PromiseBQP-hard if only the
entries Q+1 are possible.

It is known that Toffoli and Hadamard gates are universal for quantum computé}ién fhe sense
of encoded universality) . For our purposes, the following modified universal set is usefil.anetH
denote the set of Toffoli gates and the set of Hadamard gates, respectively. We cogsid@fgn: UH,
where we have defin€lles := TH andTiignt := HT. In words, Tier; is, for instance, the set of gates that
are obtained by applying an arbitrary Toffoli-gate followed by a Hadamard gate on an arbitrary qubit.
One checks easily that all gates in the universalTggt U Tiet UH have only entries ,&tl/\@. To
construct our new version of the matéwe replace the gates ¥f with gates taken from our universal
set. The problem is that we should simulateusing an odd number of gates. Since it is by no means
obvious whether and how this could be achieved we reptaceth a gate fromiest N Trignt. The latter
is a tensor product of a Hadamard and a Toffoli gate. The Hadamard gate acts on some extra qubit
(prepared in the stat®)) that is not used in the computation. The Toffoli gate copies the output to an
additional qubit (this is done by initializing a third additional qubit/1). One verifies easily that the
unitary matrixW defined by these replacements acts as a shifMrdiinensions whenever the output
is 1. We obtain then a uniform mixture of the two spectral measRi®sandP? defined in Sectio®
instead of the measuRY . To see what happens when the output is 0 we observe that the eigenvectors
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of the Hadamard gate define a decomposition of the initial state into two components. On the first
componentV acts as amM-dimenisonal shift and on the second aslalimensional shift with phase
factor —1. Therefore we obtain also a mixture of the forgP® + (1 —ro)PY. But now the weight
ro is equal to ¥(4 —2v/2) = |(0|y*)|?> where|y™) is the eigenvector of the Hadamard gate for the
eigenvalue 1. The difference between the diagonal entri@8' ébr YES-instances and NO-instances is
thus only reduced by a constant factor and the problem remains PromiseBQP-hard.

By rescaling withy/2 we obtain a matriXA with entries 0+1. The rescaling is clearly irrelevant for
the diagonal entry estimation problem since we now have spectral values within the ifte/Zl/2]
and the accuracy required Byefinition 4.1 changes by the factds/2)™ accordingly.

8 Conclusions

We have shown that the estimation of diagonal entries of powers of symmetric sparse matrices is
PromiseBQP-complete when the demanded accuracy scales appropriately with the powers of the op-
erator norm.

The quantum algorithm proposed here for solving this problem uses the fact that measurements of the
corresponding observable allow us to obtain enough information on the probability measure defined by
the eigenvector decomposition of the considered basis state. Given the assumption that ProshiseBQP
PromiseBPP, i. e., that a quantum computer is more powerful than a classical computer, the required
information on the spectral measure cannot be obtained by any efficient classical algorithm. This is
remarkable since the determination of spectral measures is a problem whose relevance is not restricted
to applications in quantum theory only.
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