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Abstract: In 1991, Papadimitriou and Yannakakis gave a reduction implying theNP-
hardness of approximating the problem 3-SAT with bounded occurrences. Their reduction
is based on expander graphs. We present an analogue of this result for the second level of
the polynomial-time hierarchy based on superconcentrator graphs. This resolves an open
question of Ko and Lin (1995) and should be useful in deriving inapproximability results
in the polynomial-time hierarchy.

More precisely, we show that given an instance of∀∃-3-SAT in which every variable
occurs at mostB times (for some absolute constantB), it is Π2-hard to distinguish between
the following two cases:YES instances, in which for any assignment to the universal vari-
ables there exists an assignment to the existential variables that satisfiesall the clauses, and
NO instances in which there exists an assignment to the universal variables such that any
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assignment to the existential variables satisfies at most a 1− ε fraction of the clauses. We
also generalize this result to any level of the polynomial-time hierarchy.

1 Introduction

In the problem∀∃-3-SAT, given a 3-CNF formula we have to decide whether for any assignment to a
set of universal variablesX there exists an assignment to a set of existential variablesY, such that the
formula is satisfied. Here, by a 3-CNF formula we mean a conjunction of clauses where each clause
is a disjunction of at most 3 literals. This problem is a standardΠ2-complete problem. We denote the
corresponding gap problem by∀∃-3-SAT[1− ε1,1− ε2] where 0≤ ε2 < ε1 ≤ 1. This is the problem
of deciding whether for any assignment to the universal variables there exists an assignment to the
existential variables such that at least a 1− ε2 fraction of the clauses are satisfied, or there exists an
assignment to the universal variables such that any assignment to the existential variables satisfies at
most a 1− ε1 fraction of the clauses. The one-sided error gap problem∀∃-3-SAT[1− ε,1] is Π2-hard
for someε > 0, as was shown in [6]. This problem has the perfect completeness property, i. e., inYES
instances it is possible to satisfyall the clauses.

In this paper we consider a restriction of∀∃-3-SAT, known as∀∃-3-SAT-B. Here, each variable
appears at mostB times whereB is some constant. In [7], Ko and Lin showed that∀∃-3-SAT-B[1−
ε1,1− ε2] is Π2-hard for some constantsB and 0< ε2 < ε1 < 1. Our main result is that the problem is
still Π2-hard for someε1 > 0 with ε2 = 0, i. e., with perfect completeness. This solves an open question
given in [7].

Theorem 1.1.The problem∀∃-3-SAT-B[1−ε,1] is Π2-hard for some constantsB andε > 0. Moreover,
this is true even when the number of literals in each clause is exactly3.

We note that the problem remainsΠ2-hard even if the number of occurrences of universal variables
is bounded by 2 and the number of occurrences of existential variables is bounded by 3. As we will
explain later, these are the least possible constants for which the problem is stillΠ2-hard unless the
polynomial-time hierarchy collapses. We believe thatTheorem 1.1is useful for derivingΠ2-hardness
results, as well asΠ2 inapproximability results. In fact,Theorem 1.1was crucial in a recent proof that
the covering radius problem on lattices with high norms isΠ2-hard [5]. Moreover, usingTheorem 1.1,
one can simplify the proof that the covering radius on codes isΠ2-hard to approximate [4].

At a very high level, the proof is based on the following ideas. First, one can reduce the number
of occurrences of existential variables by an expander construction in much the same way as was done
by Papadimitriou and Yannakakis [10]. The main difficulty in the proof is in reducing the number of
occurrences of universal variables: If we duplicate universal variables (as is usually done in order to
reduce the number of occurrences), we have to deal with inconsistent assignments to the new universal
variables (this problem shows up in the completeness proof). The approach taken by Ko and Lin [7]
is to duplicate universal variables and to add existential variables on top of the universal variables.
Their construction, in a way, enables the existential variables to override inconsistent assignments to the
universal variables. Unfortunately, it seems that this technique cannot produce instances with perfect
completeness. In our approach we also duplicate the universal variables, but instead of using them
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directly in the original clauses, we use a superconcentrator-based gadget, whose purpose is intuitively
to detect the majority among the duplicates of a universal variable. Crucially, this gadget requires only
a constant number of occurrences of each universal variable.

The rest of the paper is organized as follows.Section2 provides some background about satisfiability
problems in the second level of the polynomial-time hierarchy and about some explicit expanders and
superconcentrators. InSection3 we proveTheorem 1.1. Section4 discusses the least possible value of
B for which the problem remainsΠ2-hard. InSection5 we generalize our main theorem to any level of
the polynomial-time hierarchy.

2 Preliminaries

2.1 Π2 satisfiability problem

A D-CNF formula over a set of variables is a conjunction of clauses where each clause is a disjunction
of at mostD literals. Each literal is either a variable or its negation. A clause is satisfied by a Boolean
assignment to the variables if it contains at least one literal that evaluates toTrue.

For any reals 0≤ α < β ≤ 1 and positive integerD > 0, we define:

Definition 2.1 (∀∃-D-SAT[α,β ]). An instance of∀∃-D-SAT[α,β ] is aD-CNF Boolean formulaΨ(X,Y)
over two sets of variables. We refer to variables inX as universal variables and to those inY as existential
variables. InYES instances, for every assignment toX there exists an assignment toY such that at least
a β fraction of the clauses are satisfied. InNO instances, there exists an assignment toX such that for
every assignment toY at most anα fraction of the clauses are satisfied.

The problem∀∃-D-SAT[α,β ] is the basic approximation problem in the second level of the
polynomial-time hierarchy (see [11, 12] for a recent survey on the topic of completeness and hard-
ness of approximation in the polynomial-time hierarchy). We also define some additional variants of
the above problem. For anyB≥ 1 the problem∀∃-D-SAT-B[α,β ] is defined similarly except that each
variable occurs at mostB times inΨ. In the instances of the problem∀∃-D-SAT-B∀[α,β ], the boundB
on the number of occurrences applies only to the universal variables (as opposed to all variables).

In [7] it was shown that∀∃-3-SAT-B[1−ε1,1−ε2] is Π2-hard for someB and some 0< ε2 < ε1 < 1.
As already mentioned, inSection3 we show that it isΠ2-hard even for someB, ε1 > 0 andε2 = 0.

2.2 Expanders and superconcentrators

In this subsection, we gather some standard results on explicit constructions of expanders and supercon-
centrators (where byexplicit we mean constructible in polynomial time). The first shows the existence
of certain regular expanders.

Lemma 2.2 ([8, 9]). There exists a universal constant C1 such that for any integer n, there is an explicit
14-regular graph G= (V,E) with n≤ |V| ≤C1n vertices, such that any nonempty set S⊂ V satisfies
|E(S,S)|> min(|S|, |S|).

For the second, we need to define the notion of a superconcentrator.
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Definition 2.3 (n-superconcentrator). A directed acyclic graphG = (U ∪V ∪W,E) whereU denotes
a set ofn inputs (i. e., vertices with indegree 0) andV denotes a set ofn outputs (i. e., vertices with
outdegree 0) is ann-superconcentratorif for any subsetSof U and any subsetT of V satisfying|S|= |T|,
there are|S| vertex-disjoint directed paths inG from S to T.

The explicit construction of sparse superconcentrators has been extensively studied. Gabber and
Galil [3] were the first to give an explicit expander-based construction ofn-superconcentrator withO(n)
edges. Alon and Capalbo [1] presented the most economical known explicitn-superconcentrators, in
which the number of edges is 44n+ O(1). Their construction is based on a modification of the well-
known construction of Ramanujan graphs by Lubotzky, Phillips and Sarnak [8] and by Margulis [9].
The following theorem of [1] summarizes some of the properties of their graphs.

Theorem 2.4 ([1]). There exists an absolute constant k> 0 for which the following holds. For any n
of the form k· 2l (l ≥ 0) there exists an explicit n-superconcentrator H= (U ∪V ∪W,E) with |E| =
44n+O(1) and all of whose vertices have indegree and outdegree at most11.

In our reduction, we use a slight modification of the superconcentrator inTheorem 2.4. This graph
is described in the following claim (seeFigure 1for an illustration of the construction).

U

U
′′

W
′

V

Figure 1: The graphG(6). All edges are directed downwards. The marked subgraph is a 6-superconcen-
trator (but not necessarily the one from [1]).

Claim 2.5. There exist absolute constants c and d for which the following holds. For any natural n≥ 1
there exists an explicit directed acyclic graph G(n) = (U ∪V ∪W,E) with a set U of2n inputs (i. e.,
vertices with indegree0) with outdegree1 and a set V of n outputs (i. e., vertices with outdegree0), such
that for any subset S of U of size|S|= n there are n vertex-disjoint directed paths from S to V. Moreover,
|E| ≤ cn and all indegrees and outdegrees in G(n) are bounded by d.
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Proof. Fix somen≥ 1. By Theorem 2.4there exists an explicitn0-superconcentratorH ′ = (U ′ ∪V ′ ∪
W′,E′) for somen+ k ≤ n0 < 2(n+ k) wherek is the constant fromTheorem 2.4, such that|E′| =
44n0 +O(1) and all its indegrees and outdegrees are bounded by 11. Denote byU ′′ = {u′′1, . . . ,u

′′
n} and

by V = {v1, . . . ,vn} arbitrary subsets ofU ′ andV ′ of size exactlyn.
In order to construct the graphG(n) we add to the graphH ′ the 2n verticesU = {u1, . . . ,u2n} and 2n

edges. The input set of the graphG(n) is U , and the output set ofG(n) is V. For eachi ∈ {1, . . . ,n} we
add the directed edges(ui ,u′′i ) and(ui+n,vi). In other words, we add to the graph two matchings of size
n: the first between the vertex sets{u1, . . . ,un} andU ′′, and the second between{un+1, . . . ,u2n} andV.

It is easy to see that our graph satisfies the required properties for large enough absolute constantsc
andd. Let S⊆U be of sizen, and defineS1 = S∩{ui : 1≤ i ≤ n} andS2 = S∩{ui : n+1≤ i ≤ 2n}.
We show that there existn vertex-disjoint paths fromStoV. According to our construction, the vertices
of S2 have paths of length 1 to their neighbors inV. So it suffices to show that the vertices ofS1 have
vertex-disjoint paths to then− |S2| = |S1| remaining vertices ofV. According to the property ofH ′,
there exist vertex-disjoint paths inG(n) between the neighbors ofS1 in U ′′ and then−|S2| vertices ofV.
Combining these paths together with the matching edges betweenS1 andU ′′ completes the proof.

3 Hardness of approximation for∀∃-3-SAT-B

In this section we proveTheorem 1.1. The proof is by reduction from the problem∀∃-3-SAT[1− ε,1],
which was shown to beΠ2-hard for someε > 0 in [6]. The reduction is performed in three steps. The
first step is the main one, and it is here that we present our new superconcentrator-based construction.
The remaining two steps are standard (see for example [14] and [2]) and we include them mainly for
completeness. We remark that these two steps are also used in [7].

Step 1: Here we reduce the number of occurrences of each universal variable to at most some constant
B. As a side effect, the size of the clauses grows from being at most 3 to being at mostD, whereD
is some constant. More precisely, we establish that there exist absolute constantsB, D andε > 0
such that the problem∀∃-D-SAT-B∀[1− ε,1] is Π2-hard.

Step 2: Here we reduce the number of occurrences of the existential variables to some constantB.
Notice that we must make sure that this does not affect the number of occurrences of the universal
variables. More precisely, we show that there exist absolute constantsB, D andε > 0 such that
the problem∀∃-D-SAT-B[1− ε,1] is Π2-hard.

Step 3: Finally, we modify the formula such that the size of the clauses is exactly 3. Clearly, we must
make sure that the number of occurrences of each variable remains constant. This would complete
the proof ofTheorem 1.1.

3.1 Step 1

Before presenting the first step we offer some intuition. In order to make the number of occurrences of
the universal variables constant we replace their occurrences by new and distinct existential variables.
In detail, assumex is a universal variable that occurs` times in an instanceΨ of ∀∃-3-SAT[1− ε,1].
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For such a variable we construct the graphG(`) = (U ∪V ∪W,E) given in Claim 2.5and identify its
` output verticesV with the ` new existential variables. In addition, we associate a universal variable
with each of the 2̀ vertices ofU , and an existential variable with each vertex inW and also with each
edge inE. We add clauses that verify that in the subgraph ofG(`) given by the edges with valueTrue,
there arè vertex-disjoint paths fromU to V (and hence each vertex inV has one incoming path). We
also add clauses that verify that if an edge has valueTrue then both its endpoints must have the same
value. This guarantees that each variable inV gets the value of one of the variables inU . Completeness
follows because for any assignment toU , we can assign all the variables inV to the same value by
connecting them to those variables inU that get the more popular assignment (recall that|U |= 2|V| and
the properties given inClaim 2.5). For the proof of soundness, we show that if all theU variables are
assigned the same value, then all theV variables should also be assigned this value.

3.1.1 The reduction

The proof is by reduction from the problem∀∃-3-SAT[1−ε,1] which isΠ2-hard for some constantε > 0
as shown in [6]. Let Ψ(X,Y) be a 3-CNF Boolean formula withmclauses over the set of variablesX∪Y,
whereX = {x1, . . . ,x|X|} is the set of universal variables, andY = {y1, . . . ,y|Y|} is the set of existential
variables. The reduction constructs a formulaΨ′(X′,Y′) overX′∪Y′. The number of occurrences inΨ′

of each universal variable fromX′ will be bounded by an absolute constantB, and the number of literals
in each clause will be at mostD. In fact, these constants areB = 2 andD = d+1, whered is given in
Claim 2.5.

For each universal variablexi ∈ X denote bỳ i the number of its occurrences in the formulaΨ, and
apply Claim 2.5to obtain the graphGi = G(`i) = (Ui ∪Vi ∪Wi ,Ei). Recall that the maximum degree
(indegree and outdegree) of these graphs is bounded by some constantd and that the number of edges
in Gi is bounded byc· `i for some constantc. Denote the vertex sets ofGi by

Vi = {v(i)
1 , . . . ,v(i)

`i
}, Ui = {u(i)

1 , . . . ,u(i)
2`i
}, and Wi = {w(i)

1 , . . . ,w(i)
|Wi |} ,

and its edge set byEi = {e(i)
1 , . . . ,e(i)

|Ei |}. The set of existential variables inΨ′ is

Y′ =

( |X|⋃
i=1

(Vi ∪Wi ∪Ei)

)
∪Y .

The set of universal variables inΨ′ is X′ =
⋃|X|

i=1Ui .
The clauses ofΨ′ are divided into the following five types (seeFigure 2).

1. Major clauses: These clauses are obtained from clauses of the formulaΨ, by replacing thejth
occurrence of the universal variablexi with the variable

v(i)
j ∈Vi

for 1≤ i ≤ |X|, 1≤ j ≤ `i . The number of clauses of this type ism.
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U

W

V

∃

∀

1

2

3

4

5 + ∃

Figure 2: An illustration of the reduction for the case` = 6.

2. Outdegree clauses:These clauses verify that among the directed edges leaving a vertex inGi , at
most one has valueTrue. For each vertexw, we add the clause

(¬e(i)
j1
∨¬e(i)

j2
)

for each pair of edgese(i)
j1

,e(i)
j2

leavingw. Each such clause is duplicatedd2 times. The number of

clauses of this type is at most`i ·c·d2
(d

2

)
for eachi.

3. Flow clauses:These clauses verify for any vertexw(i)
j ∈Wi that if at least one of its outward edges

has valueTrue then there exists also an edge enteringw(i)
j with valueTrue. This is done by adding

a clause of the form
(¬e(i)

j ′ ∨e(i)
j1
∨·· ·∨e(i)

jd′
)

for eache(i)
j ′ leavingw(i)

j wheree(i)
j1

, . . . ,e(i)
jd′

are all the 0≤ d′ ≤ d edges enteringw(i)
j . The number

of clauses of this type is at mostc· `i for eachi.

4. V-degrees clauses:These clauses verify that each vertexv(i)
j has at least one incident edge with

True value. This is done by adding one clause of the form

(e(i)
j1
∨·· ·∨e(i)

jd′
)

wheree(i)
j1

, . . . ,e(i)
jd′

are thed′ ≤ d edges incident tov(i)
j . The number of clauses of this type is`i for

eachi.

5. Edge consistency clauses:For each edgee(i)
j ∈ Ei do the following. Letw(i)

j1
,w(i)

j2
∈Ui ∪Vi ∪Wi

be its endpoints. Add the two clauses

(¬e(i)
j ∨w(i)

j1
∨¬w(i)

j2
) and (¬e(i)

j ∨¬w(i)
j1
∨w(i)

j2
) ,
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which check that if the value ofe(i)
j is True, thenw(i)

j1
andw(i)

j2
have the same truth value. The

number of clauses of this type is at most 2c`i for eachi.

Note that each clause contains at mostD = d+1 literals. Using∑i `i ≤ 3m, the number of clauses in
Ψ′, which we denote bym′, is at mostO(mc· (d4 +1))≤C ·m for some absolute constantC. Moreover,
the number of occurrences of each universal variable is exactly 2, because universal variables appear
only in clauses of type(5) and vertices in theUi have outdegree 1. This completes the construction of
Ψ′.

3.1.2 Completeness

Our goal in the completeness proof is to show that ifΨ(X,Y) is aYES instance of∀∃-3-SAT[1− ε,1],
then for any assignment toX′, there is an assignment toY′ that satisfies all them′ clauses inΨ′(X′,Y′).
Let t ′ be an arbitrary assignment to the universal variablesX′. Recall thatX′ is the union

⋃|X|
i=1Ui . We

define an assignmentt to X based on the majority of the assignments given byt ′. More formally,

t(xi) =

{
True, if |{ j : t ′(u(i)

j ) = True}| ≥ `i ,

False, otherwise.

By the assumption on the original formulaΨ(X,Y), the assignmentt can be extended toX∪Y, in a way
that satisfies all the clauses inΨ(X,Y). Let us extend the assignmentt ′ to the existential variables

Y′ =
( |X|⋃

i=1

(Vi ∪Wi ∪Ei)
)
∪Y .

First, let the assignmentt ′ give the same values ast for the variables inY. For eachi denote bySi ⊆Ui

a set of vertices fromUi of size|Si |= `i in which every variable has valuet(xi). There exists such a set
according to the definition oft. By Claim 2.5there arè i vertex-disjoint directed paths inGi from Si to
Vi . We definet ′(e(i)

j ) to beTrue if e(i)
j appears in one of these paths andFalse otherwise. In addition,t ′

gives the valuet(xi) to all variables inVi ∪Wi .
We now check that the assignmentt ′ satisfies all clauses inΨ′. The assignment to the variables in

Vi is t(xi). Since the variablesY are also assigned according tot, all clauses of type(1) are satisfied.
The paths given byClaim 2.5are vertex-disjoint. In particular, every vertex has at most one outward
edge assigned toTrue, so all clauses of type(2) are satisfied too. Moreover, if at least one of the edges
leaving a vertexw∈Wi has valueTrue then there exists also a directed edge with valueTrue entering
w. Therefore, the clauses of type(3) are satisfied. The number of paths inGi is `i , so there is one
path reaching every vertex inVi . This means that the clauses of type(4) are satisfied too. Finally, our
assignment gives the valuet(xi) to all variables inSi ∪Vi ∪Wi . In particular, each edge assigned toTrue
has both its endpoints with the same value. Thus, the clauses of type(5) are satisfied, as required.

3.1.3 Soundness

In the soundness proof we assumeΨ(X,Y) is aNO instance of∀∃-3-SAT[1− ε,1]. We will show the
existence of an assignment toX′ for which any assignment toY′ satisfies at most(1− ε ′)m′ clauses of
Ψ′(X′,Y′) for ε ′ = ε/C, and hence the theorem will follow.
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Let t be an assignment toX such that every extension oft to X∪Y satisfies at most(1−ε)mclauses

in Ψ(X,Y). Define an assignmentt ′ to X′ in which every variableu(i)
j has the valuet(xi). Extendt ′ to

an assignment toX′ ∪Y′ in an arbitrary way. Our goal in the following is to show that the number of
clauses satisfied byt ′ is at most(1− ε ′)m′. We start with the following two claims.

Claim 3.1. Let t′ be an assignment to X′∪Y′ as above. Then t′ can be modified to an assignment t′′ that
satisfies every clause of type(2) and satisfies at least as many clauses as t′ satisfies.

Proof. We obtaint ′′ by performing the following modification tot ′ for eachi: For each variable inWi , if
it has more than one outward edge assigned toTrue by t ′, t ′′ assignsFalse to all its outward edges. Since
we only modify variables inEi , clauses of type(1) are not affected. Moreover, since we only set edges
to False, we do not decrease the number of satisfied clauses of type(5). We might, however, reduce
the number of satisfied clauses of types(3) and(4) by at mostd2 for each variable (at mostd for each
out-neighbor of the vertex). On the other hand, the corresponding clause of type(2) is satisfied byt ′′,
and by the duplication, this amounts to at leastd2 additional satisfied clauses. In total, the number of
clauses satisfied byt ′′ is at least the number of clauses satisfied byt ′, and the claim follows.

Claim 3.2. Let t′ be an assignment to X′ ∪Y′ that satisfies all clauses of type(2). Denote by k the

number of vertices v(i)j ∈
⋃

l Vl satisfying t′(v(i)
j ) 6= t(xi), where t is the assignment to X as above. Then

at least k clauses of types(3), (4) or (5) are unsatisfied by t′.

Proof. Fix somei. It suffices to show that to each vertexv(i)
j satisfyingt ′(v(i)

j ) 6= t(xi) we can assign in
a one-to-one fashion a clause of type(3), (4) or (5) which is not satisfied byt ′. To show this letG′ be
the subgraph ofGi given by the edges assigned toTrue by t ′. Let A j be the set of vertices that have a

directed path inG′ to v(i)
j . Since clauses of type(2) are all satisfied byt ′, the setsA j are pairwise disjoint.

Fix some 1≤ j ≤ `i such thatt ′(v(i)
j ) 6= t(xi). SinceGi is acyclic,A j contains a vertexu whose indegree

in G′ is 0. If u is in Ui then at least one of the clauses of type(5) on the path fromu to v(i)
j is unsatisfied

by t ′, becauset ′(u) = t(xi) whereast ′(v(i)
j ) 6= t(xi). Otherwise at least one of the clauses of types(3) and

(4) is unsatisfied byt ′. Therefore, we see that the number of clauses of type(3)-(5) unsatisfied byt ′ is

at least the number of verticesv(i)
j satisfyingt ′(v(i)

j ) 6= t(xi).

Recall thatt ′ is an assignment toX′ ∪Y′ that assigns every variableu(i)
j to t(xi). We have to show

thatt ′ satisfies at most(1− ε ′)m′ clauses inΨ′. By Claim 3.1we can assume thatt ′ satisfies all clauses
of type(2) in Ψ′.

Now, we define an assignmentt ′′ to X′∪Y′ as follows. For eachi, let Si be an arbitrary subset ofUi

of size`i . We know that there exist̀i directed vertex-disjoint paths fromSi to Vi in Gi . The assignment
t ′′ assigns all thee(i)

j in these paths toTrue and all othere(i)
j to False. Moreover,t ′′ gives all variables in

Ui ∪Vi ∪Wi the valuet(xi). Finally, we definet ′′ onY to be identical tot ′. Notice that int ′′ all clauses of

type (2)-(5) are satisfied. Denote byk the number of the variablesv(i)
j satisfyingt ′(v(i)

j ) 6= t(xi). Then
the number of type(1) clauses satisfied byt ′′ is smaller than that oft ′ by at mostk. Moreover,t ′ satisfies
all clauses of type(2), so byClaim 3.2at leastk clauses of type(3)-(5) are unsatisfied byt ′. In total,
the number of clauses satisfied byt ′′ is at least the number of clauses satisfied byt ′.
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Finally, by our assumption onΨ and ont we get that at leastεmclauses of type(1) are not satisfied
by t ′′. So the number of satisfied clauses is at mostm′− εm≤ (1− ε ′)m′, as required.

3.2 Step 2

With Step 1 proven, we now apply an idea of [10] to show that there are absolute constantsB andε > 0,
for which the problem∀∃-D-SAT-B[1− ε,1] is Π2-hard. This proof uses the expander graphs from
Lemma 2.2.

The reduction: Consider theΠ2-hard problem∀∃-D-SAT-B∀[1− ε ′,1] for someε ′ > 0. LetΨ(X,Y)
be an instance of this problem. For every existential variableyi ∈ Y (1 ≤ i ≤ |Y|) denote byni the
number of the occurrences ofyi in Ψ. Assumingni is large enough, consider the graphGi = (Vi ,Ei)
given byLemma 2.2for ni , with ni ≤ |Vi | ≤C1ni (if ni is not large enough, we do not need to modify

this variable). Label the vertices ofGi with |Vi | new distinct existential variablesYi = {y(i)
1 , . . . ,y(i)

|Vi |}. We
construct a new Boolean formulaΨ′(X,Y′) over the universal variables inX and the existential variables

in Y′ =
⋃|Y|

i=1Yi . First, for each 1≤ i ≤ |Y| replace the occurrences ofyi by ni distinct variables ofYi .

Second, for each edge(y(i)
j ,y(i)

j ′ ) in Gi , add toΨ the two clauses

(¬y(i)
j ∨y(i)

j ′ ) and (y(i)
j ∨¬y(i)

j ′ ) ,

which are both satisfied if and only if the variablesy(i)
j ,y(i)

j ′ have the same value. The number of clauses
in Ψ′ is linear in∑i ni ≤ Dm. Notice, that the number of occurrences ofeachvariable inΨ′ is bounded
by a constant.

Correctness: Let Ψ(X,Y), anm clause formula, be aYES instance, i. e., for every assignment toX
there exists an assignment toY such that every clause inΨ is satisfied. Clearly, for any assignment
to X there exists an assignment toY′ which satisfies all the clauses inΨ′, because we can set theYi

variables the value ofyi in Ψ. Now , assumeΨ is aNO instance, so there is an assignmentt to X such
that for any assignment toY at leastε ′m clauses are unsatisfied inΨ. Let t ′ be an arbitrary extension
of t to X∪Y′. If for some 1≤ i ≤ |Y|, t ′ does not assign to all theYi variables the same value for some
1≤ i ≤ |Y|, it is possible to improve the number of satisfied clauses by setting all theYi variables to
the majority vote oft ′ on Yi . Indeed, denote bySi the set of variables inYi that were assigned byt ′ to
True. This modification reduces the number of satisfied clauses by at most min(|Si |, |Si |), but satisfies at
least|E(Si ,Si)| unsatisfied consistency clauses.Lemma 2.2states that|E(Si ,Si)|> min(|Si |, |Si |), so this
modification improves the number of satisfied clauses. Hence, we can assume that for each 1≤ i ≤ |Y|,
t ′ assigns to all theYi variables the same value for each 1≤ i ≤ |Y|. Thus, by the assumption onΨ we
conclude thatt ′ does not satisfy at leastε ′m clauses, meaning at least anε ′/D fraction of the clauses is
not satisfied. Definingε = ε ′/D completes the proof.

3.3 Step 3

This subsection completes the proof ofTheorem 1.1by showing a reduction that modifies the size of the
clauses to exactly 3.
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The reduction: Let Ψ(X,Y) be an instance of∀∃-D-SAT-B[1− ε ′,1] with m clauses. We transform
Ψ into a formulaΨ(X′,Y′), whose clauses are of size exactly 3, as follows. For each clause of size 1,
like (a), we add a new universal variablezand replace it by(a∨z∨z). Similarly, for each clause of size
2, like (a∨b), we add a new universal variablez and replace it by(a∨b∨ z). Now consider a clause
C = (u1∨u2∨·· ·∨ur) of sizer > 3, where theui are literals. For each such clause introducer −3 new
and distinct existential variablesz1, . . . ,zr−3 and replaceC in the formulaΨ by the clauses ofC′,

C′ = (u1∨u2∨z1)∧ (¬z1∨u3∨z2)∧·· ·∧ (¬zr−4∨ur−2∨zr−3)∧ (¬zr−3∨ur−1∨ur) .

The number of the clauses inΨ′ is at mostDm. Obviously, the number of occurrences of each variable
remains the same, and the newly added variables appear either once or twice.

Correctness: It is easy to see that ifΨ is aYES instance then so isΨ′ and that ifΨ is aNO instance,
then there exists an assignment toX′ such for any assignmentY′, at leastε ′mof the clauses ofΨ′(X′,Y′)
are unsatisfied. So forε = ε ′/D we get the desired result.

4 On the number of occurrences

The output of the reduction ofSection3 is a formula in which every universal variable occurs at most
twice and every existential variable occurs at mostB times for some constantB. By performing a
transformation similar to the one in Step 2 with the graphs ofLemma 2.2replaced by directed cycles,
the number of occurrences of each existential variable can be made at most 3 (see for example Theorem
10.2, Part 1 in [2]). This implies that if we allow each universal variable to occur at most twice and each
existential variable to occur at most 3 times, the problem remainsΠ2-hard. Here, we show that 2 and 3
are the best possible constants (unless the polynomial-time hierarchy collapses).

First note that whenever a universal variable occurs only once in a formula, we can remove it without
affecting the formula. Hence, if each universal variable occurs at most once, the problem is inNP and
thus is notΠ2-hard, unless the polynomial-time hierarchy collapses.

Moreover, if we allow every existential variable to occur at most twice, the problem lies incoNP and
is thus unlikely to beΠ2-hard. Given an assignment to the universal variablesX, the formulaΨ(X,Y)
becomes aSAT formula in which each variable appears at most twice. Checking satisfiability of such
formulas can be done in polynomial time [13]. Indeed, variables that appear only once and those that
appear twice with the same sign can be removed from the formula together with the clauses that contain
them. This means that we are left with aSAT formula in which each variable appears once as a positive
literal and once as a negative one. So consider the bipartite graphH = (A∪B,E) in which A is the set
of clauses ofΨ andB is the set of its existential variables. We connect by an edge a clause inA to a
variable inB if the clause contains the variable. Notice that there exists a matching inH that saturates
A if and only if the formula is satisfiable. The existence of such a matching can be checked easily in
polynomial time. Therefore∀∃-SAT restricted to instances in which every existential variable occurs at
most twice is incoNP.
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5 Extension to higher levels of the hierarchy

As one might expect,Theorem 1.1can be generalized to any level of the polynomial-time hierarchy. In
this section, we describe in some detail how this can be done. Our aim is to prove the following theorem
(the problems below are the natural extension of∀∃-3-SAT to higher levels of the hierarchy; see [6]).

Theorem 5.1. For any r≥ 1 there exists anε > 0 such that(∀∃)r -3-SAT-B[1− ε,1] is Π2r -complete
and∃(∀∃)r -3-SAT-B[1− ε,1] is Σ2r+1-complete (whereB is some absolute constant). Moreover, this is
true even when the number of literals in each clause is exactly3.

For convenience, we present the proof only for the even levels of the hierarchy (Π2r ). The case of
odd levels is almost identical.

Our starting point is a result of [6], which says that for anyr ≥ 1 there exists anε > 0 such that
(∀∃)r -3-SAT[1− ε,1] is Π2r -complete. As inSection3, the proof proceeds in three steps. In the first
we reduce the number of occurrences of universal variables. In the second we reduce the number of
occurrences of existential variables. Finally, in the third step we modify the formula such that the size
of each clause is exactly 3.

5.1 Step 1

In this step we show that for anyε > 0 there exists anε ′ > 0 such that(∀∃)r -3-SAT[1− ε,1] reduces to
(∀∃)r -D-SAT-B∀[1− ε ′,1] for some absolute constantsD,B (where the latter problem is a restriction of
the former to instances in which each universal variable appears at mostB times). In more detail, given
a 3-CNF formulaΨ on variable setX1∪Y1∪ ·· ·∪Xr ∪Yr , we show how to construct aD-CNF formula
Ψ′ on variable setX′

1∪Y′
1∪ ·· · ∪X′

r ∪Y′
r in which each universal variable appears at mostB times, and

whose size is linear in the size ofΨ, such that

max
tX1

min
tY1

· · ·max
tXr

min
tYr

SAT(Ψ, tX1, tY1, . . . , tXr , tYr )

= max
tX′1

min
tY′1

· · ·max
tX′r

min
tY′r

SAT(Ψ′, tX′
1
, tY′

1
, . . . , tX′

r
, tY′

r
) , (5.1)

whereSAT denotes the number ofunsatisfiedclauses in a formula for a given assignment. It is easy to
see that this is sufficient to establish the correctness of the reduction. Moreover, it can be verified that in
Step 1,Section3 we proved Equation (5.1) for the caser = 1.

Before describing the reduction, we note that in Step 1,Section3, the only property of the original
formula that we used is that flipping the value of an occurrence of a variable can change the number
of satisfied clauses by at most one. This leads us to the following lemma, whose proof was essentially
given already in Step 1,Section3.

Lemma 5.2. For any`≥ 1 there exists a k≥ ` and aD-SAT formulaΦ(x1, . . . ,x2`,y1, . . . ,yk) (for some
absolute constantD) on 2`+k variables of size O(`) in which each of the first2` variables appears at
most twice such that the following holds. For any integer-valued function f on` Boolean variables with
the property that flipping any one variable changes the value of f by at most one, we have that

max
x

f (x, . . . ,x) = max
x1,...,x2`

min
y1,...,yk

( f (y1, . . . ,y`)+SAT(Φ,x1, . . . ,x2`,y1, . . . ,yk)) ,
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where x,x1, . . . ,x2`,y1, . . . ,yk are Boolean variables.

Using this lemma we can now describe our reduction. We are given a 3-CNF formulaΨ on variable
setX1∪Y1∪·· ·∪Xr ∪Yr . We perform the following modifications for each universal variablex. Let i be
such thatx∈ Xi and` be the number of timesx occurs inΨ. Let k andΦ be as given byLemma 5.2.
First, we replacex ∈ Xi with 2` new variablesx1, . . . ,x2` ∈ Xi and addk new variablesy1, . . . ,yk to Yi .
Next, we replace thè occurrences ofx with y1, . . . ,y`. Finally, we appendΦ(x1, . . . ,x2`,y1, . . . ,yk) to
the formula. LetΨ′ be the resulting formula andX′

1∪Y′
1∪·· ·∪X′

r ∪Y′
r be the resulting variable set. This

completes the description of the reduction.
Clearly, each universal variable inΨ′ appears at most twice, and moreover, the size ofΨ′ is linear in

that ofΨ. Therefore it remains to prove Equation (5.1). We do this by showing that for each universal
variable, the modifications we perform leave the expression in Equation (5.1) unchanged. So letΨ be an
arbitrary formula on some variable setX1∪Y1∪ ·· ·∪Xr ∪Yr , and letx∈ Xi be a universal variable with
` occurrences. It can be seen that our goal is to show that1

max
tX1

min
tY1

· · ·max
tXi\{x}

max
x

min
tYi

· · ·max
tXr

min
tYr

g(tX1, tY1, . . . , tXi\{x},x, . . . ,x, tYi , . . . , tXr , tYr )

= max
tX1

min
tY1

· · ·max
tXi\{x}

max
x1,...,x2`

min
y1,...,yk

min
tYi

· · ·max
tXr

min
tYr

(g(tX1, tY1, . . . , tXi\{x},y1, . . . ,y`, tYi , . . . , tXr , tYr )+SAT(Φ,x1, . . . ,x2`,y1, . . . ,yk)) ,

whereg denotes the number of unsatisfied clauses inΨ under the given assignment to all variables
exceptx and to all occurrences ofx, andk andΦ are as inLemma 5.2. Clearly it suffices to prove this
equality for any fixed setting to the variables quantified beforex, i. e.,

max
x

min
tYi

· · ·max
tXr

min
tYr

g(tX1, tY1, . . . , tXi\{x},x, . . . ,x, tYi , . . . , tXr , tYr )

= max
x1,...,x2`

min
y1,...,yk

min
tYi

· · ·max
tXr

min
tYr

(g(tX1, tY1, . . . , tXi\{x},y1, . . . ,y`, tYi , . . . , tXr , tYr )+SAT(Φ,x1, . . . ,x2`,y1, . . . ,yk)) ,

but this follows fromLemma 5.2.
We conclude that(∀∃)r -D-SAT-B∀[1− ε,1] is Π2r -hard for someε > 0.

5.2 Step 2

In this step we show that for anyε > 0 there exists anε ′ > 0 such that(∀∃)r -D-SAT-B∀[1−ε,1] reduces
to (∀∃)r -D-SAT-B[1− ε ′,1] for some absolute constantsD,B. The following lemma is the analogue of
Lemma 5.2for existential variables, and its proof essentially appeared already in Step 2,Section3.

Lemma 5.3. For any large enough̀ there exists a2-SAT formulaΦ(y1, . . . ,y`) on ` variables of size
O(`) in which each variable appears at mostB times (for some absolute constantB) such that the

1We remark that the fact that we write maxtXi \{x} maxx as opposed to maxx maxtXi \{x} will be crucial when we apply
Lemma 5.2, as this prevents an additional quantifier alternation.
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following holds. For any integer-valued function f on` Boolean variables with the property that flipping
any one variable changes the value of f by at most one, we have that

min
y

f (y, . . . ,y) = min
y1,...,y`

( f (y1, . . . ,y`)+SAT(Φ,y1, . . . ,y`)) ,

where y,y1, . . . ,y` are Boolean variables.

The reduction is as follows. We are given aD-CNF formulaΨ on variable setX1∪Y1∪·· ·∪Xr ∪Yr .
We perform the following modifications for each existential variabley. Let i be such thaty∈Yi and`
be the number of timesy occurs inΨ. Let Φ be as given byLemma 5.3. First, we replacey∈Yi with
` variablesy1, . . . ,y` ∈ Yi . Next, we replace thè occurrences ofy with y1, . . . ,y`. Finally, we append
Φ(y1, . . . ,y`) to the formula. This completes the description of the reduction. The proof of correctness
is similar to the previous one and usesLemma 5.3.

5.3 Step 3

To complete the proof ofTheorem 5.1we now modify the formula so that the number of literals in each
clause is exactly 3. Given a formulaΨ on variable setX1∪Y1∪ ·· ·∪Xr ∪Yr we apply the modification
of Step 3,Section3. We add the new existential variables toYr and the new universal variables toXr .
The proof of correctness is easy and is omitted.
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