Matrix Approximation and Projective Clustering via Volume Sampling

by Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang

Theory of Computing, Volume 2(12), pp. 225-247, 2006

Bibliography with links to cited articles

[1] D. Achlioptas and F. McSherry: Fast computation of low rank matrix approximations. In Proc. 33rd STOC., pp. 611-618. ACM Press, 2001. [STOC:380752.380858].
[2] P. Agarwal, S. Har-Peled, and K. Varadarajan: Geometric approximations via coresets. Combinatorial and Computational Geometry - MSRI Publications, 52:1-30, 2005.
[ .pdf ]
[3] P. Agarwal and N. Mustafa: k-means projective clustering. In Proc. Principles of Database Systems (PODS'04), pp. 155-165. ACM Press, 2004. [PODS:1055558.1055581].
[4] P. Agarwal, C. Procopiuc, and K. Varadarajan: Approximation algorithms for a k-line center. Algorithmica, 42:221-230, 2005. [Algorithmica:p321725768012505].
[5] R. Agarwal, J. Gehrke, D. Gunopulos, and P. Raghavan: Automatic subspace clustering of high dimensional data for data mining applications. Data Mining and Knowledge Discovery, 11:5-33, 2005. [Springer:m18077t9134v55n2].
[6] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park: Fast algorithms for projected clustering. In Proc. Conf. on Management of Data (SIGMOD'99), pp. 61-72. ACM Press, 1999. [SIGMOD:304182.304188].
[7] N. Alon, Y. Matias, and M. Szegedy: The space complexity of approximating the frequency moments. J. Computer and System Sciences, 58:137-147, 1999. [JCSS:10.1006/jcss.1997.1545].
[8] M. Artin: Algebra. Prentice-Hall, 1991.
[9] Z. Bar-Yossef: Sampling lower bounds via information theory. In Proc. 35th STOC., pp. 335-344. ACM Press, 2003. [STOC:780542.780593].
[10] M. Badoiu, S. Har-Peled, and P. Indyk: Approximate clustering via core-sets. In Proc. 34th STOC., pp. 250-257. ACM Press, 2002. [STOC:509907.509947].
[11] W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani: Approximation schemes for clustering problems. In Proc. 35th STOC., pp. 50-58. ACM Press, 2003. [STOC:780542.780550].
[12] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang: Matrix approximation and projective clustering via volume sampling. In Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (SODA'06), pp. 1117-1126. SIAM, 2006. [SODA:1109557.1109681].
[13] A. Deshpande and S. Vempala: Adaptive sampling and fast low-rank matrix approximation. In Proc. 10th Internat. Workshop on Randomization and Computation (RANDOM'06), pp. 292-303. Springer, 2006.
[ .pdf ]
[14] P. Drineas and R. Kannan: Pass efficient algorithms for approximating large matrices. In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (SODA'03), pp. 223-232. SIAM, 2003. [SODA:644108.644147].
[15] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay: Clustering large graphs via the singular value decomposition. Machine Learning, 56:9-33, 2004. [ML:u424k6nn6k622788].
[16] P. Drineas, R. Kannan, and M. Mahoney: Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM J. on Computing, 36:158-183, 2006. [SICOMP:10.1137/S0097539704442696].
[17] M. Effros and L. J. Schulman: Rapid near-optimal VQ design with a deterministic data net. In Proc. Int. Symp. on Information Theory, p. 298. IEEE, 2004. [ISIT:10.1109/ISIT.2004.1365336].
[18] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang.: On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207-216, 2005. [TCS:10.1016/j.tcs.2005.09.013].
[19] A. Frieze, R. Kannan, and S. Vempala: Fast Monte Carlo algorithms for finding low-rank approximations. Journal of the ACM, 51:1025-1041, 2004. [JACM:1039488.1039494].
[20] S. A. Goreinov and E. E. Tyrtyshnikov: The maximal-volume concept in approximation by low-rank matrices. Contemporary Mathematics, 280:47-51, 2001.
[21] S. Guha, N. Koudas, and K. Shim: Approximation and streaming algorithms for histogram construction problems. ACM Transactions on Database Systems, 31:396-438, 2006. [TODS:1132863.1132873].
[22] S. Har-Peled and S. Mazumdar: On coresets for k-means and k-median clustering. In Proc. 36th STOC., pp. 291-300. ACM Press, 2004. [STOC:1007352.1007400].
[23] S. Har-Peled and K. Varadarajan: Projective clustering in high dimensions using core-sets. In Proc. 18th Symp. on Comp. Geometry (SOCG), pp. 312-318. ACM Press, 2002. [SOCG:513400.513440].
[24] M. Henzinger, P. Raghavan, and S. Rajagopalan: Computing on data streams. External Memory Algorithms - DIMACS Series in Discrete Mathematics and Computer Science, 50:107-118, 1999.
[25] D. Kempe and F. McSherry: A decentralized algorithm for spectral analysis. In Proc. 36th STOC., pp. 561-568. ACM Press, 2004. [STOC:1007352.1007438].
[26] J. Kuczynski and H. Wozniakowski: Estimating the largest eigenvalues by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13:1094-1122, 1992. [SIMAX:10.1137/0613066].
[27] A. Kumar, Y. Sabharwal, and S. Sen.: A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions. In Proc. 45th FOCS, pp. 454-462. IEEE Computer Society Press, 2004. [FOCS:10.1109/FOCS.2004.7].
[28] J. Matoušek: On approximate geometric k-clustering. Discrete and Computational Geometry, 24:61-84, 2000. [Springer:xawxbau59gtjtvv6].
[29] N. Megiddo and A. Tamir: On the complexity of locating linear facilities in the plane. Operations Research Letters, 13:194-197, 1982. [Elsevier:10.1016/0167-6377(82)90039-6].
[30] R. Ostrovsky and Y. Rabani: Polynomial time approximation schemes for geometric min-sum median clustering. Journal of the ACM, 49:139-156, 2002. [JACM:506147.506149].
[31] C. Procopiuc, P. Agarwal, T. Murali, and M. Jones: A Monte Carlo algorithm for fast projective clustering. In Proc. Conf. on Management of Data (SIGMOD'02), pp. 418-427. ACM Press, 2002. [SIGMOD:564691.564739].
[32] L. Rademacher, S. Vempala, and G. Wang: Matrix approximation and projective clustering. Technical Report 2005-018, MIT CSAIL, 2005.
[33] T. Sarlós: Improved approximation algorithms for large matrices via random projection. In Proc. 47th FOCS, pp. 143-152. IEEE Computer Society Press, 2006.
[ .pdf ]

This file has been generated by bibtex2html 1.81.