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1 Introduction

Let p be an unknown multivariate polynomial over a fixed field. Given random input/output pairs cho-
sen from some distributionD, can a computationally bounded learner output a hypothesis which will
correctly approximatep with respect to future random examples chosen fromD? This problem, known
as the multivariate polynomial learning problem, continues to be a fundamental area of research in
computational learning theory. If the learner is allowed to query the unknown polynomial at points of
his choosing (instead of receiving random examples) and is required to output the exact polynomialp,
then this problem is precisely the well-known polynomial interpolation problem. Both the learning and
the interpolation problem have received a great deal of attention from the theoretical computer science
community. In a learning context, multivariate polynomials are expressive structures for encoding in-
formation (sometimes referred to as the “algebraic” analogue of DNF formulae (see e. g. [4])) while
polynomial interpolation has been studied in numerous contexts and has important applications in com-
plexity theory, among other fields [2, 34].

Previous research on this problem has focused on giving algorithms whose running time is polyno-
mial in the number of terms or monomials of the unknown polynomial. This is a natural way to measure
the complexity of learning and interpolating polynomials when the unknown polynomial is viewed in
the usual “sum of monomials” representation. That is to say, given that the polynomialp= ∑t

i=1mi is the
sum oft monomials, we may wish to output a list of these monomials (and their respective coefficients),
hence using at leastt time steps simply to write down the list of coefficients. Several researchers have
developed powerful interpolation and learning algorithms for a variety of contexts which achieve time
bounds polynomial in all the relevant parameters, includingt (see for example [4, 11, 16, 20, 23, 31]).

1.1 Arithmetic circuits

In this paper we are concerned with learning succinct representations of polynomials via alternate al-
gebraic models of computation, most notablyarithmetic circuits. An arithmetic circuit syntactically
represents a multivariate polynomial in the obvious way: a multiplication (addition) gate outputs the
product (sum) of the polynomials on its inputs. The input wires to the circuit correspond to the input
variables of the polynomial and thus the output of the circuit computes some polynomial of the input
variables. We measure the size of an arithmetic circuit as the number of gates. For example, the stan-
dard “sum of monomials” representation of a polynomialp = ∑t

i=1 αixi1 · · ·xin (αi is an arbitrary field
element) corresponds precisely to a depth-2 arithmetic circuit with a single sum gate at the root andt
product gates feeding into the sum gate (each product gate multiplies some subset of the input variables).
To rephrase previous results on learning and interpolating polynomials in terms of arithmetic circuits,
we could say that depth-2 arithmetic circuits with a sum gate at the root are learnable in time polynomial
in the size of the circuit.

Moving beyond the standard “sum of products” representation, we consider the complexity of learn-
ing higher depth arithmetic circuits. It is easy to see that there exist polynomial size depth-3 (or even
depth-2 with a product gate at the root) arithmetic circuits capable of computing polynomials withex-
ponentiallymany monomials. For example, let{Li, j},1≤ i, j ≤ n be a family ofn2 distinct linear forms
overn variables. Then∑n

i=1 ∏n
i=1Li, j is a polynomial size depth-3 arithmetic circuit but cannot be written

as a sum of polynomially many monomials. Although arithmetic circuits have received a great deal of
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attention in complexity theory and, more recently, derandomization, the best known result for learning
arithmetic circuits in a representation other than the depth-2 sum of products representation is due to
Beimel et al. [4] who show that depth-2 arithmetic circuits with a product gate of fan inO(logn) at
the root and addition gates1 of unbounded fan-in in the bottom level are learnable in polynomial time,
and that circuits that compute polynomials of the form∑i ∏ j pi, j(x j) (pi, j is a univariate polynomial of
polynomial degree) can be learned in polynomial time.2

1.2 Our results

We learn various models of algebraic computation capable of encoding exponentially many monomials
in their input size. Our algorithms work with respect to any distribution and require membership query
access to the concept being learned. More specifically we show that any class of polynomial size arith-
metic circuits whose partial derivatives induce a vector space of dimension polynomial in the circuit
size is learnable in polynomial time. This characterization generalizes the work of Beimel et al. [4] and
yields the following results:

• An algorithm for learning general depth-3 arithmetic circuits withm product gates each of fan in
at mostd in time polynomial inm, 2d, andn, the number of variables.

• The first polynomial time algorithm for learning polynomial size noncommutative formulae com-
puting polynomials over a fixed partition of the variables (note there are no depth restrictions on
the size of the formula).

• The first polynomial time algorithm for learning polynomial size read once, oblivious algebraic
branching programs.

As an easy consequence of our results we observe a polynomial time algorithm for learning the
class of depth-3 set-multilinear circuits: polynomialsp = ∑m

i=1 ∏n
j=1Li, j(Xj) where eachLi, j is a linear

form and theXj ’s are a partition of the input variables. We note that this result also follows as an easy
corollary from the work of [4]. Finally we show that, with respect to known techniques, it is hard to
learn polynomial size depth-3 homogeneous arithmetic circuits in polynomial time.3 This indicates that
our algebraic techniques give a fairly tight characterization of the learnability of arithmetic circuits with
respect to current algorithms.

1.3 Our techniques

We use as a starting point the work on multiplicity automata due to Beimel et al. [4]. A multiplicity
automaton is a nondeterministic finite automaton where each transition edge has weight from the un-
derlying field (for a precise definition seeSection2). On inputx, f (x) is equal to the sum, over all
accepting paths of the automaton on inputx, of the product of the edge weights on that accepting path.

1Beimel et al. actually allow addition gates to sum powers of the input variables, rather than just summing variables.
2The latter class of circuit can be viewed as a restricted version of depth-3 circuits where the addition gates at the bottom

can only sum powers of a certain variable.
3A depth-3 circuitp = ∑m

i=1 ∏di
j=1Li, j (x1, . . . ,xn) is homogeneous if in eachLi, j the free term is zero.
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In [7, 4], the authors, building on work due to [27], show that multiplicity automata can be learned in
polynomial time and that these multiplicity automata can compute polynomials in their standard sum
of products representation (actually, as mentioned earlier, they can learn any polynomialp of the form
p = ∑n

i=1 ∏m
j=1 pi j (x j) wherepi j (x j) is a univariate polynomial of polynomial degree). Their analysis

centers on the Hankel matrix of a multiplicity automaton (seeSection2 for a definition).
We give a new characterization of learnability in terms of partial derivatives. In particular we show

that any polynomial whose partial derivatives induce a low dimensional vector space has a low rank
Hankel matrix. We conclude that any arithmetic circuit or branching program whose partial derivatives
form a low dimensional vector space can be computed by polynomial size multiplicity automaton and
are amenable to the learning algorithms developed in [7, 4]. As such, we output a multiplicity automaton
as our learner’s hypothesis.

Our next task is to show which circuit classes have partial derivatives that induce low dimensional
vector spaces. At this point we build on work due to Nisan [25] and Nisan and Wigderson [26] (see
also [33]) who analyzed the partial derivatives of certain arithmetic circuit classes in the context of prov-
ing lower bounds and show that a large class of algebraic models have “well-behaved” partial deriva-
tives. For example we show that the dimension of the vector space of partial derivatives induced by a
set-multilinear depth-3 arithmetic circuit is polynomial in the size of the circuit.

Our results suggest that partial derivatives are a powerful tool for learning multivariate polynomials,
as we are able to generalize all previous work in this area and give new results for learning interesting
algebraic models. Additionally, we can show there are depth-3 polynomial-size, homogeneous, arith-
metic circuits whose partial derivatives induce a vector space of superpolynomial dimension. We feel
this motivates the problem of learning depth-3 homogeneous, polynomial-size arithmetic circuits, as
such a result would require significantly new techniques. We are hopeful that our characterizations in-
volving partial derivatives will further inspire complexity theorists to use their techniques for developing
learning algorithms.

1.4 The relationship to lower bounds

In the case of learning Boolean functions, the ability to prove lower bounds against a class of Boolean
circuits usually coincides with the ability to give strong learning algorithms for those circuits. For
example the well known lower bounds of Håstad [19] against constant depth Boolean circuits are used
heavily in the learning algorithm due to Linial, Mansour, and Nisan [24]. Jackson et al. [21] have shown
that constant depth circuits with a majority gate, one of the strongest circuit classes for which we can
prove lower bounds (see [3]), also admit nontrivial learning algorithms. Furthermore Jackson et al. [21]
show that we will not be able to learn more complicated Boolean circuits unless certain cryptographic
assumptions are false.

Our work furthers this relationship in the algebraic setting. The models of algebraic computation
we can learn correspond to a large subset of the models of algebraic computation for which strong
lower bounds are known. For example Nisan [25] gives exponential lower bounds for noncommutative
formulae. Nisan and Wigderson [26] prove exponential lower bounds for depth-3 set-multilinear circuits.
Moreover, in both papers the authors prove lower bounds by considering the partial derivatives spanned
by the circuit and the function computed by it, a method similar to ours. Over finite fields there are
exponential lower bounds for depth 3 circuits [15, 17], however no exponential lower bounds are known
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for general depth-3 arithmetic circuits over infinite fields (see [33]). As in the Boolean case, we exploit
many of the insights from the lower bound literature to prove the correctness of our learning algorithms.

A preliminary version of this paper appeared in COLT 2003 [22].

1.5 Organization

In Section2 we review relevant learning results for multiplicity automata as well as state some basic
facts from algebraic complexity. InSection3 we prove our main theorem, characterizing the learnability
of arithmetic circuits via their partial derivatives. In Sections4, 5, and6 we state our main learning
results for various arithmetic circuits and algebraic branching programs.

2 Preliminaries

We denote withF the underlying field, and with char(F) the characteristic ofF. When studying a
polynomial f we either assume that char(F) = 0 or that the degree of each variable inf is smaller than
char(F).

2.1 The learning model

We will work in the model of exact learning from membership and equivalence queries, first introduced
by Angluin [1]. In this model a learner begins with some candidate hypothesish for an unknown concept
f and is allowed access to both amembership queryoracle and anequivalence queryoracle. The
membership query oracle takes as inputx and outputsf (x). The equivalence query oracle takes as
input the learner’s current hypothesish and outputs a counterexample, namely an inputy such that
h(y) 6= f (y). We assume that making a membership or an equivalence query of lengthk takes timek. If
no such counterexample exists then we say that the learner has exactly learnedf . We say that a concept
f is exactly learnable in timet if there exists an exact learner forf whose running time is bounded by
t. A concept class is considered to be exactly learnable in polynomial time if for everyf in the concept
class there exists an exact learner forf running in time polynomial in the size of the smallest description
of f . Known transformations imply that if a concept class is exactly learnable in polynomial time then
it is also learnable in Valiant’s PAC model in polynomial time with membership queries.

2.2 Multiplicity automata

A multiplicity automaton is a nondeterministic automaton where each transition edge is assigned a
weight, and the output of the automaton for any inputx is the sum over all accepting paths ofx of
the products of the weights on each path.

Definition 2.1. Let Σ be an alphabet. A multiplicity automatonA of sizer overΣ consists of a vector
γ̄ ∈ Fr (i. e. γ̄ = (γ1, . . . ,γr)) and a set of matrices{µσ}σ∈Σ, where eachµσ is anr× r matrix overF. The
output ofA on inputx = (x1, . . . ,xn) ∈ Σn is defined to be the inner product of(∏n

i=1 µxi )1 andγ̄ where
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(∏n
i=1 µxi )1 equals the first row of the matrix4 ∏n

i=1 µxi . In other words the output is the first coordinate
of the vector(∏n

i=1 µxi ) · γ̄.

Intuitively each matrixµσ corresponds to the transition matrix of the automaton for symbolσ ∈ Σ.
Iterative matrix multiplication keeps track of the weighted sum of paths from statei to state j for all
i, j ≤ r. The first row of the iterated product corresponds to transition values starting from the initial
state and̄γ determines the acceptance criteria.

Next we define the Hankel matix of a function:

Definition 2.2. Let Σ be an alphabet andf : |Σ|n→ F. Fix an ordering of all strings inΣ≤n. We construct
a matrixH whose rows and columns are indexed by strings inΣ≤n in the following way. Forx∈ Σd and
y∈ Σn−d, for some 0≤ d ≤ n, let the(x,y) entry ofH be equal tof (x◦y). For any other pair of strings
(x,y) such that|x|+ |y| 6= n let Ha,b = 0. The resulting matrixH is called the Hankel matrix off for
strings of lengthn. We defineHk to be thek-th “block” of H, i. e. Hk is the submatrix defined by all rows
of H indexed by strings of length exactlyk and all columns ofH indexed by strings of length exactly
n−k.

The following key fact relates the rank of the Hankel matrix of a function for strings of lengthn with
the size of multiplicity automaton computingf on inputs of lengthn:

Theorem 2.3 ([13, 14, 4]). Let f : Σn → F. Then the rank of the Hankel matrix of f (overF) is equal to
the size of the smallest multiplicity automaton computing f on inputs of length n.

Previous learning results have computed the rank of the Hankel matrices of particular polynomials
yielding a bound on the size of their multiplicity automata. In fact, Beimel et al. [4], improving on [27],
learn functions computed by multiplicity automata by iteratively learning their corresponding Hankel
matrices:

Theorem 2.4 ([4]). For f : Σn → F, let r be the rank of the Hankel matrix of f for strings of length
n. Then there exists an exact learning algorithm for f running in time polynomial in n, r, and|Σ|.
Furthermore the final hypothesis output by the learning algorithm is a multiplicity automaton of size r
over alphabetΣ. Moreover, if for every variable xi the degree of f as a polynomial in xi (overF) is at
most d, then the running time of the learning algorithm is polynomial in n, r and d.

Our main technical contribution is to show that the rank of a function’s Hankel matrix is bounded by
(and in most cases equal to) the dimension of the vector space of a function’s partial derivatives. Thus
we reduce the problem of learning a polynomial to bounding the dimension of the vector space of its
partial derivatives.

2.3 Set-multilinear polynomials

In this paper we will work primarily with polynomials that respect a fixed partition of the input variables:

4We denoteµxn ·µxn−1 · . . . ·µx1 with ∏n
i=1 µxi .
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Definition 2.5. Let X =
⋃̇d

i=1Xi be a partition of the variables intod sets. A polynomial over the variables
X is called set-multilinear if every monomialm is of the formy1 ·y2 · · ·yd where eachyi is some variable
from Xi . Thus, any set-multilinearf is also homogeneous and multilinear of degreed.

We will sometime use the notationf (X1, . . . ,Xd) to denote thatf is set-multilinear with respect to

the partitionX =
⋃̇d

i=1Xi .

Example 2.6. Let X = (xi, j)1≤i, j≤d be ad× d matrix. Let Xi = {xi,1, . . . ,xi,d} be thei-th row of X.

ClearlyX =
⋃̇d

i=1Xi . Note that both the determinant and the permanent ofX are set-multilinear polyno-
mials with respect to this partition.

Another example is the class of depth-3 set-multilinear circuits, first defined by Nisan and Wigder-
son [26], that computes only set-multilinear polynomials.5 To see this note that any polynomial com-
puted by a depth-3 set-multilinear circuits is of the formp = ∑n

i=1 ∏m
j=1Li, j(Xj) where eachLi, j is a

linear form and theXj ’s are a partition of the input variables. In later sections we will show that certain
algebraic branching programs also compute set-multilinear polynomials and will therefore be amenable
to our learning techniques.

Another notation that we use is the following:

Definition 2.7. Let X =
⋃̇d

i=1Xi . For any 1≤ k≤ d define

SM[X1, ...,Xk] = { M | M =
k

∏
i=1

xi ,xi ∈ Xi } .

ThusSM[X1, ...,Xk] is the set of all set-multilinear monomials of degreek.

2.4 Partial derivatives

In this subsection we introduce some notation for computing partial derivatives.

Definition 2.8. Let M[x1, . . . ,xn] be the set of monomials in the variablesx1, . . . ,xn. Let Md[x1, . . . ,xn]
be the set of monomials of degree at mostd in x1, . . . ,xn.

Example 2.9. M2[x1,x2] = {1,x1,x2,x2
1,x1 ·x2,x2

2}.

Definition 2.10. Let d = ∑k
i=1di . For a functionf (x1, ...,xn) and a monomialM = ∏k

i=1xi
di let

∂ f
∂M

=
1

M!
· ∂ d f

∏k
i=1(∂xi)

di
,

whereM! = ∏k
i=1(di !).

Recall that in case thatF is finite we only consider polynomials in which the degree of each variable
is smaller than the characteristic ofF. In particular we will only consider partial derivatives with respect
to monomials in which each variable has degree smaller than char(F).

5In the original paper [26] these circuits are called multilinear circuits, but in recent works [28, 29, 30] they are referred to
as set-multilinear circuits.
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Example 2.11.Let f (x1,x2,x3) = x2
1x2 +x3 andM(x1,x2,x3) = x1x2. We have that

∂ f
∂M

= 2x1, M! = 1 .

Definition 2.12. For a functionf (x1, . . . ,xn) andk≤ n let

∂k( f ) =
{

∂ f
∂M

monomialsM ∈M[x1, ...,xk]
}

.

Also define

rankk( f ) = dim(span(∂k( f ))) .

Note that in∂k( f ) we only consider partial derivatives with respect to the firstk variables.

Example 2.13. Let X = (xi, j)1≤i, j≤3 be a 3× 3 matrix. Let f (X) = Det(X) (the determinant ofX).
Consider the following order of the variablesxi, j < xi′, j ′ if i < i′ or i = i′ and j < j ′. Then

∂6(X) = {x2,2x3,3−x2,3x3,2, x2,1x3,3−x2,3x3,1, x2,1x3,2−x2,2x3,1, x3,1, x3,2, x3,3} .

Thus, rank6( f ) = 6.

For set-multilinear polynomials we need a slightly different definition (although we use the same
notations).

Definition 2.14. Let X =
⋃̇d

i=1Xi . For a set-multilinear polynomialf (X1, . . . ,Xd) andk≤ d let

∂k( f ) =
{

∂ f
∂M

monomialsM ∈ SM[X1, ...,Xi ] for 1≤ i ≤ k

}
.

We defines-rankk( f ) = dim(span(∂k( f ))).

Note that in particular we only consider partial derivatives with respect to monomials of the form
∏k′

i=1xi wherexi ∈ Xi andk′ ≤ k. We will never consider partial derivative with respect to the monomial
x1 ·x3 (again,xi ∈ Xi).

Example 2.15. Let X be a 3× 3 matrix (as inExample 2.6 with d = 3). Let f = Det(X) =
Det(X1,X2,X3) be the determinant ofX where whereX1 = {x1,1,x1,2,x1,3},X2 = {x2,1,x2,2,x2,3}, and
X3 = {x3,1,x3,2,x3,3}. Then∂2( f ) = {x3,1,x3,2,x3,3}. Thus,s-rank2( f ) = 3.

Note the difference fromExample2.13 where we ignored the fact that the determinant is a set-
multilinear polynomial.
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3 Characterizing learnability via partial derivatives

In this section, we present our main criterion for establishing the learnability of both arithmetic circuits
and algebraic branching programs. We prove that any polynomial whose partial derivatives form a low
degree vector space induce low rank Hankel matrices. To relate the rank of the Hankel matrix ofC to its
partial derivatives we will need the following multivariate version of Taylor’s theorem:

Fact 3.1. Let X = {x1, . . . ,xn} and letf (X) be a degreed polynomial. Letρ = (ρ1◦ρ2) be an assignment
to the variables, whereρ1 is an assignment to the firstk variables andρ2 as assignment to the lastn−k
variables. For a monomialM defineM(ρ) be value ofM on assignmentρ. Then

f (ρ) = f (ρ1◦ρ2) = ∑
M∈Md[x1,...,xk]

M(ρ1) ·
∂ f
∂M

(~0◦ρ2) .

Proof. Because of the linearity of the partial derivative operator it is enough to prove the claim for
the case thatf is a monomial. Letf (x1, . . . ,xn) = ∏n

i=1xi
di , where∑di ≤ d. Consider a monomial

M ∈ Md[x1, . . . ,xk] given byM = ∏k
i=1xi

ei , where∑ei ≤ d. Notice that if there is some 1≤ i ≤ k with
ei > di then ∂ f

∂M = 0. Also notice that if for some 1≤ i ≤ k we have thatei < di then ∂ f
∂M (~0◦ρ2) = 0

because the assignment toxi is zero. In particular the only contribution to the sum will come from the
partial derivative with respect toM0 = ∏k

i=1xi
di that gives ∂ f

∂M0
= ∏n

i=k+1xi
di . In particular

∑
M∈Md[x1,...,xk]

M(ρ1) ·
∂ f
∂M

(~0◦ρ2) = M0(ρ1) ·
∂ f

∂M0
(~0◦ρ2) =

k

∏
i=1

xi
di (ρ1) ·

n

∏
i=k+1

xi
di (ρ2) = f (ρ) .

Now we can state the main technical theorem of the paper:

Theorem 3.2. Let f(x1, . . . ,xn) be a degree d polynomial. Then for every k≤ n,

dim(Hk( f ))≤ rankk( f ) .

If f is multilinear then equality holds.

Proof. We will define two matricesVd,k andEk such that rank(Ek)≤ rankk( f ) andHk = Vd,k ·Ek.

Construction of Ek (Evaluation Matrix): We index the rows ofEk by the set of monomialsMd[x1, ...,xk]
(in lexicographical order) and the columns by elements ofFn−k (in lexicographical order). The(M,ρ)
entry ofEk is equal to

(Ek)M,ρ =
∂ f
∂M

(~0◦ρ) ,

where~0 is a lengthk vector andρ is in Fn−k. This is equal to the value of the partial derivative off with
respect toM at the point~0◦ρ. Whenk = 0, the matrix has only one row (the partial derivative of order
zero is the polynomial itself), in which theρth position is equal tof (ρ). The following is a standard
fact from linear algebra:
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Claim 3.3. rank(Ek)≤ rankk( f ), and equality holds if f is multilinear.

Proof. Row M of Ek is the evaluation of∂ f
∂M on all inputs of the form~0◦ρ, where~0 is a lengthk vector

and ρ is of lengthn− k. Hence each vector corresponds to part of the “truth table” of a particular
partial derivative off in which the assignment to the firstk variables is zero. Clearly if a set of partial
derivatives is linearly dependent then so are the corresponding rows. Thus rank(Ek)≤ rankk( f ). When
f is multilinear, all of the variables inM disappear from the resulting polynomial, and we actually get
that the rows ofEk represent the entire truth table of the corresponding partial derivative off and hence
rank(Ek) = rankk( f ).

Construction of Vd,k (Generalized Vandermonde Matrix): The rows ofVd,k are indexed by elements of
Fk (in lexicographical order) and the columns are indexed by the set of monomialsMd[x1, ...,xk] (again
in lexicographical order). The(ρ,M) entry ofVd,k is equal toM(ρ). Whenk = 0 the matrix contains
only one column, whose entries are equal to 1. We note that the column rank ofVk is full (similarly to
the usual Vandermonde matrix).

Consider the matrix productVd,k ·Ek. Notice that its(ρ1◦ρ2) entry is equal to

(Vd,k ·Ek)ρ1◦ρ2 = ∑
M∈Md[x1,...,xk]

M(ρ1)
∂ f
∂M

(~0◦ρ2)

which byFact3.1equalsf (ρ1◦ρ2). ThusVd,k ·Ek = Hk. In particular rank(Hk)≤ rank(Ek)≤ rankk( f ).
When f is multilinear we have that, as before, rank(Ek) = rankk( f ), and as the column rank ofVk is full
it follows that rank(Hk) = rank(Ek) = rankk( f ).

By summing over all values ofk we obtain

Corllary 3.4. Let f(x1, . . . ,xn) be a polynomial. Then

dim(H( f ))≤
n

∑
k=0

rankk( f ) .

If f is multilinear then

dim(H( f )) =
n

∑
k=0

rankk( f ) .

Now we consider set-multilinear polynomials. We must be careful here to take into account partial
derivatives with respect to monomialsM that are not inSM[X1, . . . ,Xi ] for any i. Below, we show that
rows inEk corresponding to suchM’s are zero.

Let f (X1, . . . ,Xd) be a set-multilinear polynomial with respect toX =
⋃̇

Xi . We order the variables of
X as follows: first we setX1 < X2 < .. . < Xd, then we order the variables in eachXi in some linear order.
Consider the(M,ρ) entry in Ek. Notice that ifM 6∈

⋃d
i=1SM[X1, . . . ,Xi ] then ∂ f

∂M (~0◦ ρ) = 0. Indeed,
assume that the firstk variables cover the setsX1, . . . ,Xi , as well as some of the variables in the setXi+1.
Since we substitute 0 to the firstk variables we see thatM must contain a variable from eachX1, . . . ,Xi

(as otherwise, becausef is set-multilinear, the entireM-th row ofEk is zero). We also note thatM can’t
contain two variables from the setXj (as again this would imply that theM-th row is zero). In particular,
in order for theM-th row to be non zero we must have thatM ∈ SM[X1, . . . ,Xi ] for that i. As a corollary
we get
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Corllary 3.5. Let f be a set-multilinear polynomial with an ordering of the variables as above. For
each1≤ k≤ n let ik be defined by ∣∣∣ ik⋃

i=1

Xi

∣∣∣≤ k <
∣∣∣ik+1⋃

i=1

Xi

∣∣∣ .

Thenrank(Ek)≤ s-rankik( f ).

This corollary implies the following version ofCorollary3.4for set-multilinear polynomials.

Theorem 3.6. Let X=
⋃̇d

i=1Xi , with |X|= n. Let f(X1, . . . ,Xd) be a set-multilinear polynomial. Then

dim(H( f ))≤ n
d

∑
k=0

s-rankk( f ) .

Proof. According toTheorem3.2 we have that dim(H( f )) = ∑n
k=0 rank(Ek). By Corollary3.5 we get

that rank(Ek)≤ s-rankik( f ), whereik is such that

∣∣∣ ik⋃
i=1

Xi

∣∣∣≤ k <
∣∣ik+1⋃

i=1

Xi

∣∣∣ .

In particular we get that

dim(H( f )) =
n

∑
k=0

rank(Ek)
(∗)
≤

d

∑
i=0

|Xi+1| ·s-ranki( f )≤ n
d

∑
i=0

s-ranki( f ) ,

where inequality(∗) follows from the observation that for everyk, such that
∣∣⋃i

j=1Xj
∣∣≤ k <

∣∣⋃i+1
j=1Xj

∣∣,
it holds thatik = i, and so there are|Xi+1| suchk’s.

4 Learning depth-3 arithmetic circuits

In this section we learn depth-3 arithmetic circuits. The results that we obtain also follow from the works
of [6, 4], however we reprove them in order to demonstrate the usefulness of our techniques. We begin
by defining the model:

Definition 4.1. A depth 3 arithmetic circuit is a layered graph with 3 levels and unbounded fan-in. At
the top we have either a sum gate or a product gate. A depth 3 arithmetic circuitC with a sum (product)
gate at the top is called aΣΠΣ (ΠΣΠ) circuit and has the following structure:

C =
m

∑
i=1

d

∏
j=1

Li, j(X)

where eachLi, j is a linear function in the input variablesX = x1, . . . ,xn andm is the number of multipli-
cation gates. The size of the circuit is the number of gates, in this caseO(md).
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A ΣΠΣ circuit is a homogeneous circuit if all the linear forms are homogeneous linear forms (i. e.
the free term is zero) and all the product gates have the same fan in (or degree). In other words every
gate of the circuit computes a homogeneous polynomial. We will also be interested in set-multilinear
depth 3 circuits. To define this sub-model we need to impose a partition on the variables:

Definition 4.2. A ΣΠΣ circuit is called set-multilinear with respect toX =
⋃̇d

i=1Xi if every linear function
computed at the bottom is a homogeneous linear form in one of the setsXi , and each multiplication gate
multiplies d homogeneous linear formsL1, . . . ,Ld where everyLi is over a distinct set of variablesXi .
That is to say a depth-3 set-multilinear circuitC has the following structure:

C =
m

∑
i=1

d

∏
j=1

Li, j(Xj)

whereLi, j is an homogeneous linear form.

We now give an algorithm for learning set-multilinear depth-3 circuits. The algorithm is based on
the following lemma that characterizes the dimension of a set-multilinear circuit’s partial derivatives:

Lemma 4.3. If a polynomial f is computed by a set-multilinear depth 3 circuit with m product gates
then for every1≤ k≤ d,

s-rankk( f )≤ km .

Proof. First notice that for every product gate

P =
d

∏
i=1

Li(Xi)

we have s-rankk(P)≤ k. Indeed, let 1≤ r ≤ k. then for any monomialM ∈ SM[X1, ...,Xr ] we have that

∂P
∂M

= αM ·
d

∏
i=r+1

Li(Xi)

for some constantαM depending onM andP. Thus, as we vary over allr between 1 andk we obtain
only k distinct partial derivatives. The proof of the lemma now follows from the linearity of the partial
derivative operator.

Applying Lemma4.3, Theorem3.6, andTheorem2.4we obtain the following learning result:

Theorem 4.4. Let C be a set-multilinear depth-3 circuit with m product gates over n variables with
coefficients from a fieldF. ThenC is learnable in time polynomial in m and n.

We note that this result also follows immediately from the results of [6, 4].
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4.1 Learning general depth 3 circuits

We now give our learning algorithm for general depth-3 arithmetic circuits. Unlike the algorithm in the
set-multilinear case, this algorithm runs in time exponential in the degree of the circuit (and polynomial
in the other parameters). Thus we can learn in subexponential time any depth-3 circuit of sublinear
degree. The running time of the algorithm is determined by the following lemma:

Lemma 4.5. Let f : Fn → F be a polynomial over a variable set X of size n computed by a depth-3
circuit with m product gates each of degree at most d. Then for every1≤ k≤ d,

rankk( f )≤ m·
k

∑
i=1

(
d
i

)
.

Proof. The proof is similar to the case of set-multilinear depth-3 circuits. Notice that for every product
gate

P =
d

∏
i=1

Li(X)

we have rankk(P)≤ ∑k
i=1

(d
i

)
. Indeed, for any monomialM of degreer we have that

∂P
∂M

∈ span

{
∏
i∈T

Li(X) T ⊂ [d], |T|= d− r

}
.

Since there are at mostm product gates we obtain the claimed bound.

Applying the above lemma withTheorem3.2andTheorem2.4we get the following learning result (that
was also obtained in [6]):

Theorem 4.6. Let f : Fn → F be computed by a depth-3 arithmetic circuit with m product gates each of
fan in at most d. Then f is learnable in time polynomial in n,2d, and m.

4.2 Discussion

The fact that the rank off was bounded by the number of product gates is unique to set-multilinear
depth-3 circuits. For example consider the following depth-2ΠΣ circuit:

f (z,x1, ...,xn) =
n

∏
i=1

(z+xi) .

For every ordering of the variables, the dimension of the span of the partial derivatives off (and hence
the rank of the Hankel matrix off ) is exponential inn; this follows from the observation that the
coefficient ofzd is then−d symmetric polynomial whose partial derivatives have dimension 2Ω(n−d)

(see [33]). Thus it is no surprise that Beimel et al. [4] only considered depth-2ΠΣ circuits where
the product gate at the root has fan in at mostO(logn); fan in larger thanO(logn) would correspond to
Hankel matrices of superpolynomial dimension and thus would not be learnable by multiplicity automata
techniques.
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To show the limits of current learning techniques we point out that the following homogeneous
depth-3 arithmetic circuit

C′ =
n

∏
i=1

(z+xi)+
n

∏
i=1

(v+ui)

is both irreducible and has exponentially many linearly independent partial derivatives. As its degree is
n we can only learn it in time exponential inn. We leave open the problem of learning homogeneous
depth-3 arithmetic circuits (as well as the more difficult problem of learning general depth-3 arithmetic
circuits) of superlogarithmic degree.

5 Learning classes of algebraic branching programs

Algebraic and Boolean branching programs have been intensely studied by complexity theorists and
have been particularly fruitful for proving lower bounds. Considerably less is known in the learning
scenario — Bshouty et al. [12] and Bergadano et al. [5] have shown some partial progress for learning
restricted width Boolean branching programs. In this section we will show how to learn any polynomial
size algebraic branching program that is both read once and oblivious. As such we will be able to
show that multiplicity automata are essentially equivalent to read once, oblivious algebraic branching
programs, a characterization that may be of independent interest. We begin with a general definition of
algebraic branching programs:

Definition 5.1. An algebraic branching program (ABP), first defined by Nisan [25], is a directed acyclic
graph with one vertex of in-degree zero, which is calledsource, and one vertex of out-degree zero,
which is called thesink. The vertices of the graph are partitioned into levels numbered 0, ...,d. Edges
are labeled with a homogeneous linear form in the input variables and may only connect vertices from
level i to vertices from leveli +1. The source is the only vertex at level 0 and the sink is the only vertex
at the leveld. Finally the size of the ABP is the number of vertices in the graph.

The polynomial that is computed by an ABP is the sum over all directed paths from the source to
the sink of the product of linear functions that labeled the edges of the path. It is clear that an ABP with
d+1 levels computes a homogeneous polynomial of degreed.

In this section we will show how to learn a natural restriction of an algebraic branching program as
mentioned above: the read once, oblivious algebraic branching program or ROAB.

Definition 5.2. Let X =
⋃̇d

i=1Xi be a partition of the input variables intod disjoint sets. An ABP is
oblivious if for every leveli only one set of variablesXj appears. A function is a ROAB, a read once,
oblivious algebraic branching program, if it is an oblivious ABP and every set of variablesXj appears in
at most one level.

We are interested in learning ROABs with respect to the partitionX =
⋃̇d

i=1Xi in which the vari-
ables inXi appear on edges from leveli to level i + 1. In this section we measure the complexity of a
polynomial in terms of its smallest ROAB:

THEORY OFCOMPUTING, Volume 2 (2006), pp. 185–206 198



LEARNING ARITHMETIC CIRCUITS

Definition 5.3. For a polynomialf we defineB( f ) to be the size of the smallestABP for f . For a
set-multilinear polynomialf we denoteOB( f ) to be the size of the smallest ROAB forf .

The main theorem of this section shows that for set-multilinear polynomials, the size of its smallest
ROAB is equal to the dimension of the vector space induced by its partial derivatives:

Theorem 5.4. For a set-multilinear polynomial f(X1, ...,Xd) we have that

d

∑
k=1

s-rankk( f ) = OB( f ) .

To proveTheorem5.4we will need the following theorem which is implicit in Nisan [25]:

Theorem 5.5 ([25]). Let f(X1, . . . ,Xd) be a set-multilinear polynomial. For each0≤ k ≤ d define a
matrixMk( f ) as follows:

• Each row is labeled with a monomial M1 ∈ SM[X1, . . . ,Xk].

• Each column is labeled with a monomial M2 ∈ SM[Xk+1, . . . ,Xd].

If k = 0 then M1 = 1 and if k= d then M2 = 1. The(M1,M2) entry ofMk( f ) is equal to the coefficient
of the monomial M1 ·M2 in f . We have that

OB( f ) =
d

∑
k=0

rank(Mk( f )) .

Proof ofTheorem5.4. We will show that rank(Mk( f )) = s-rankk( f ) which, combined withTheo-
rem 5.5, completes the proof. Consider a row ofMk( f ) corresponding to some monomialM ∈
SM[X1, . . . ,Xk]. Since f is a set-multilinear polynomial it follows that∂ f

∂M is equal to∑t αtMt where
eachαt is an element of the field andMt ∈ SM[Xk+1, . . . ,Xd], for all t. Notice, however, that rowM
of Mk( f ) is precisely equal to the row vector(α1, . . . ,αt). Hence rowM of Mk( f ) is equal to the co-
efficients of the partial derivative off viewed as a set-multilinear polynomial inXk+1, . . . ,Xd. It is a
standard fact from linear algebra that the dimension of a vector space spanned by a set of polynomials
is equal to the rank of the matrix of their coefficients.

CombiningTheorem5.4andTheorem3.6we see that any polynomial-size ROAB obeying the above
partition is computed by a polynomial-size multiplicity automata. Applying the learning algorithm of
Beimel et al. [4] we obtain

Theorem 5.6. Let X=
⋃̇d

i=1Xi . Let f(X1, . . . ,Xd) be a set-multilinear polynomial that is computed by a
ROAB of size m. Then f is learnable in time polynomial in m, and|X|.

Notice that ROABs can be thought of as the arithmetic generalization of OBDDs (Ordered Binary
Decision Diagrams, which are also known as oblivious read once branching programs), a model for
which Bergadano et al. [5] gave a learning algorithm based on multiplicity automata.
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5.1 Equivalence of ROABs and multiplicity automata

We can now prove that ROABs are essentially equivalent to multiplicity automata. Since our learning
algorithm outputs as a hypothesis a multiplicity automaton,Theorem5.6 implies that every ROAB of
sizem in n variables is computed by a multiplicity automaton of size polynomial inmandn. We cannot
show that every multiplicity automaton is computed by a ROAB, but we can show that every multiplicity
automaton is computed by a ROAB which computes higher degree polynomials at each edge.

Definition 5.7. Define a ROAB of degreed to be a ROAB where every edge is labelled with a polynomial
of degreed.

Lemma 5.8. Let f be any polynomial over n variables computed by an algebraic multiplicity automaton
of size r. Assume also the the degree of each variable in f is bounded by d. Then f can be computed by
a ROAB with n+2 levels of size nr+2 and degree d.

Proof. Let S⊆Σ be a subset of the alphabet of sized+1. Let f be computed by a multiplicity automaton
A of sizer consisting of the set of matrices{µσ}σ∈Σ and the vector~γ ∈ Σr . Construct a matrixT where
the i, j entry ofT is a degreed univariate polynomial,Ti, j , interpolating the(i, j) entry ofµσ for every
σ ∈ S. That is,Ti, j(σ) is the(i, j) entry of µσ (for σ ∈ S). Consider a ROAB withn+ 2 levels each
of size r where every level 1≤ i ≤ n has a copy of ther states ofA (in particular we enumerate the
vertices in each level with{1, . . . , r}). Connect every vertex at levelk, for 1≤ k≤ n−1, to every vertex
at levelk+ 1. For the j-th vertex in levelk and thei-th vertex in levelk+ 1 we label edge( j, i) with
the polynomial in the(i, j) entry ofT, havingxk as its variable (i. e. the label isTi, j(xk)). Connect every
vertex in leveln to the sink and label edge(i,sink) with the polynomial in theT1,i(xn) (recall the output
of a multiplicity automata is the inner product of~γ with the first row of the product of theµσ ’s). Also
connect the source to every one of ther vertices in the first level and label the edge to vertexi with
γi . It is clear that this ROAB computes a polynomial of degree at mostd in each variable, and that for
every input fromSn the output of the ROAB agrees withf . Therefore, by the following version of the
Schwartz Zippel lemma [32, 36] we get that this ROAB computesf as required.

Lemma 5.9 ([32, 36]). Let f,g : Fn → F be two n-variate polynomials overF. Assume that the degree
of each variable in f and g is at most d. Let S⊆ F be a set of size d+1. If for every x∈ Sn we have that
f (x) = g(x) then f= g.

6 Learning noncommutative formulæ

In this section we show how to learn another type of arithmetic circuits: polynomial size noncommu-
tative formulae. A noncommutative formula is an arithmetic formula where multiplication does not
necessarily commute; i.e. different orderings of inputs to a product gate result in different outputs. Intu-
itively this restriction makes it difficult for a formula to use the power of cancellation. This may seem to
be a strange restriction, but it is very natural in the context of function computation where an ordering
is enforced on groups of variables. For example, the product ofk matricesM1, . . . ,Mk where matrix
Mi uses variables from a setXi can be viewed as a set-multilinear noncommutative polynomial over an
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ordering of the variablesX =
⋃̇

Xi (changing the order of the matrices will result in a different output).
In addition, many of the known algorithms for computing polynomials are non-commutative by nature.
For example, the well known algorithm for the above mentioned iterated matrix multiplication can be
viewed as a non-commutative set-multilinear circuit. Similarly, Ryser’s algorithm for computing the
permanent (see, e. g. [35]) can be viewed as a non-commutative set-multilinear formula.

Nisan proved the first lower bounds for noncommutative formulae in [25]; here we will give the first
learning algorithm for set-multilinear polynomials computed by noncommutative formulae. Previously
only algorithms for learning read-once arithmetic formulae were known (see e. g. [18, 10, 9, 8]). We
begin with a general definition for arithmetic formulae:

Definition 6.1. An arithmetic formula is a tree whose edges are directed towards the root. The leaves
of the tree are labeled with input variables. Every inner vertex is labeled with one of the arithmetic
operations{+,×}. Every edge is labeled with a constant from the field in which we are working. The
size of the formula is defined to be the number of vertices.

An arithmetic formula computes a polynomial in the obvious manner. We now define non-
commutative formulae. Roughly, a formula is noncommutative if for any two input variablesxi and
x j , xix j − x jxi 6= 0. More formally, letF{x1, ...,xn} be the polynomial ring over the fieldF in the
non-commuting variablesx1, . . . ,xn. That is, inF{x1, ...,xn} the formal expressionsxi1 · xi2 · . . . · xik and
x j1 ·x j2 · . . . ·x j l are equal if and only ifk = l and∀m im = jm (whereas in the commutative ring of polyno-
mials we have that any monomial remains the same even if we permute its variables, e. g.x1 ·x2 = x2 ·x1).
A non-commutative arithmetic formula is an arithmetic formula where multiplications are done in the
ring F{x1, ...,xn}. As two polynomials in this ring do not necessarily commute, we have to distinguish in
every multiplication gate between the left son and the right son. For a polynomialf let F( f ) be the size
of the smallest noncommutative formula computingf . When considering non-commutative formulae
we are interested insyntacticcomputations, e. g. given the polynomialx1 ·x2 we want the formula to out-
put this exact polynomial and not the polynomialx2 ·x1, even though they are semantically equal when
considering assignments from a field. In particular the formula(x1−x2) · (x1+x2) does not compute the
polynomialx2

1−x2
2.

Note that every polynomial can be computed by a non-commutative formula, and that given a non-
commutative formula we can evaluate it over a commutative domain.

In [25] Nisan proved exponential lower bounds on the size of noncommutative formula computing
the permanent and the determinant. An important ingredient of Nisan’s result is the following lemma
relating noncommutative formula size to algebraic branching program size:

Lemma 6.2 ([25]). Let f(X1, . . . ,Xd) be a set-multilinear polynomial. Then

B( f )≤ d(F( f )+1) .

Using this we can give the following relationship between noncommutative formulae and ROABs:

Theorem 6.3.Let f(X1, . . . ,Xd) be a set-multilinear polynomial computed by a noncommutative formula
of size m, then f is computed by a ROAB of size d(m+1).
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Proof. Applying Lemma6.2 we see thatf is computed by an algebraic branching programB of size
d(m+1). We will show thatB is also computed by a ROAB of sized(m+1), by constructing a ROAB
with d+1 levels, in which the variables inXk label the edges that go from levelk−1 to levelk.

Consider the set of edges inB from leveli−1 to i. Assume that two different sets of variables appear
from level i−1 to leveli sayXi andXj . Then the output ofB will contain a monomial of the form and
YxjZ wherex j ∈ Xj , Y is a set of variables appearing in levels less thani−1 in B, andZ is the set of
variables appearing in levels greater thani in B. Note however thatf is a set-multilinear polynomial,
in particular in each monomial off the variables fromXj appear as thej-th multiplicand. In particular
no monomial of the formYxjZ appear inf . Thus, the coefficient of any monomialYxjZ must be zero.
As such, we can substitute the constant 0 for all of the variablesXj appearing on these edges and obtain
an oblivious branching programB′ computing the same polynomial asB. B′ can be made read-once in
a similar fashion. At the end we get a ROAB withd+1 levels in which the variables fromXi label the
edges from leveli−1 to leveli.

CombiningTheorem6.3with Theorem5.6we obtain

Theorem 6.4. Let f(X1, . . . ,Xd) be a set-multilinear polynomial, over X=
⋃̇d

i=1Xi , that is computable
by a noncommutative formula of size m with coefficients from a fieldF. Then f is learnable in time
polynomial in|X| and m.

7 Acknowledgments

We thank Ran Raz for many helpful discussions in all stages of this work. We also thank Eli Ben-Sasson
for important conversations at an early stage of this research. We thank the anonymous referees for their
valuable comments, and for bringing [6] to our attention.

References

[1] * D. ANGLUIN: Queries and concept learning. Machine Learning, 2:319–342, 1988.
[ML:l147k68714mhg8m5]. 2.1

[2] * S. ARORA, C. LUND, R. MOTWANI , M. SUDAN , AND M. SZEGEDY: Proof verifica-
tion and the hardness of approximation problems.Journal of the ACM, 45(3):501–555, 1998.
[JACM:278298.278306]. 1

[3] * J. ASPNES, R. BEIGEL, M. FURST, AND S. RUDICH: The expressive power of voting polyno-
mials. InProc. 23rd STOC, pp. 402–409. ACM Press, 1991. [STOC:103418.103461]. 1.4

[4] * A. BEIMEL , F. BERGADANO, N. H. BSHOUTY, E. KUSHILEVITZ , AND S. VARRICCHIO:
Learning functions represented as multiplicity automata.Journal of the ACM, 47(3):506–530,
2000. [JACM:337244.337257]. 1, 1.1, 1.2, 1.3, 2.3, 2.2, 2.4, 4, 4, 4.2, 5

[5] * F. BERGADANO, N. H. BSHOUTY, C. TAMON , AND S. VARRICCHIO: On learning branching
programs and small depth circuits. InProc. of the 3rd European Conf. on Computational Learning

THEORY OFCOMPUTING, Volume 2 (2006), pp. 185–206 202

http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#A87
http://springerlink.metapress.com/link.asp?id=l147k68714mhg8m5
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#ALMSS98
http://portal.acm.org/citation.cfm?id=278298.278306
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#ABFR91
http://portal.acm.org/citation.cfm?id=103418.103461
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BBB00
http://portal.acm.org/citation.cfm?id=337244.337257
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BBTV97


LEARNING ARITHMETIC CIRCUITS

Theory (EuroCOLT’97), volume 1208 ofLNCS, pp. 150–161, 1997. [LNCS:73001q2141150g25].
5, 5

[6] * F. BERGADANO, N. H. BSHOUTY, AND S. VARRICCHIO: Learning multivariate polynomials
from substitution and equivalence queries.Electronic Colloquium on Computational Complexity,
3(8), 1996. [ECCC:TR96-008]. 4, 4, 4.1, 7

[7] * F. BERGADANO AND S. VARRICCHIO: Learning behaviors of automata from multi-
plicity and equivalence queries. SIAM Journal on Computing, 25(6):1268–1280, 1996.
[SICOMP:10.1137/S009753979326091X]. 1.3

[8] * D. BSHOUTY AND N. H. BSHOUTY: On interpolating arithmetic read-once formu-
las with exponentiation. Journal of Computer and System Sciences, 56(1):112–124, 1998.
[JCSS:10.1006/jcss.1997.1550]. 6

[9] * N. H. BSHOUTY, T. R. HANCOCK, AND L. HELLERSTEIN: Learning arith-
metic read-once formulas. SIAM Journal on Computing, 24(4):706–735, 1995.
[SICOMP:10.1137/S009753979223664X]. 6

[10] * N. H. BSHOUTY, T. R. HANCOCK, AND L. HELLERSTEIN: Learning boolean read-once for-
mulas over generalized bases.Journal of Computer and System Sciences, 50(3):521–542, 1995.
[JCSS:10.1006/jcss.1995.1042]. 6

[11] * N. H. BSHOUTY AND Y. M ANSOUR: Simple learning algorithms for decision trees
and multivariate polynomials. SIAM Journal on Computing, 31(6):1909–1925, 2002.
[SICOMP:10.1137/S009753979732058X]. 1

[12] * N. H. BSHOUTY, C. TAMON , AND D. K. WILSON: On learning width two branchinng
programs. Information Processing Letters, 65(4):217–222, 1998. [IPL:10.1016/S0020-
0190(97)00204-4]. 5

[13] * J. W. CARLYLE AND A. PAZ: Realizations by stochastic finite automata.Journal of Computer
and System Sciences, 5(1):26–40, 1971.2.3

[14] * M. FLIESS: Matrices de Hankel.Journal de Math́ematiques Pures et Appliquées, 53:197–224,
1974. 2.3

[15] * D. GRIGORIEV AND M. K ARPINSKI: An exponential lower bound for depth 3 arithmetic cir-
cuits. InProc. 30th STOC, pp. 577–582. ACM Press, 1998. [STOC:276698.276872]. 1.4

[16] * D. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER: Computational complex-
ity of sparse rational interpolation. SIAM Journal on Computing, 23(1):1–11, 1994.
[SICOMP:10.1137/S0097539791194069]. 1

[17] * D. GRIGORIEV AND A. A. RAZBOROV: Exponential complexity lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. InProc. 39th FOCS, pp. 269–278.
IEEE Computer Society Press, 1998. [FOCS:10.1109/SFCS.1998.743456]. 1.4

THEORY OFCOMPUTING, Volume 2 (2006), pp. 185–206 203

http://springerlink.metapress.com/link.asp?id=73001q2141150g25
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BBV96
http://www.eccc.uni-trier.de/eccc-reports/1996/TR96-008
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BergadanoV96
http://dx.doi.org/10.1137/S009753979326091X
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BB98
http://dx.doi.org/10.1006/jcss.1997.1550
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BshoutyHH95b
http://dx.doi.org/10.1137/S009753979223664X
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BshoutyHH95a
http://dx.doi.org/10.1006/jcss.1995.1042
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BM02
http://dx.doi.org/10.1137/S009753979732058X
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#BTW96
http://dx.doi.org/10.1016/S0020-0190(97)00204-4
http://dx.doi.org/10.1016/S0020-0190(97)00204-4
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#CP71
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#F74
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#GK98
http://portal.acm.org/citation.cfm?id=276698.276872
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#GKS94
http://dx.doi.org/10.1137/S0097539791194069
http://theoryofcomputing.org/articles/main/v002/a010/bibliography.html#GR98
http://doi.ieeecomputersociety.org//10.1109/SFCS.1998.743456


A. R. KLIVANS AND A. SHPILKA

[18] * T. R. HANCOCK AND L. HELLERSTEIN: Learning read-once formulas over fields and extended
bases. InProc. of the 4th Ann. Conf. on Computational Learning Theory (COLT ’91), pp. 326–336.
Morgan Kaufmann, 1991. [ACM:114836.114867]. 6
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