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Abstract: A property tester with high probability accepts inputs satisfying a given prop-
erty and rejects inputs that are far from satisfying it. A tolerant property tester, as defined
by Parnas, Ron and Rubinfeld, must also accept inputs that are close enough to satisfying
the property. We construct two properties of binary functions for which there exists a test
making a constant number of queries, but yet there exists no such tolerant test. The first
construction uses Hadamard codes and long codes. Then, using Probabilistically Check-
able Proofs of Proximity as constructed by Ben-Sasson et al., we exhibit a property which
has constant query intolerant testers but for which any tolerant tester requiresnΩ(1) queries.
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1 Introduction

Combinatorial property testing deals with the following task: For a fixedε > 0 and a fixed propertyR,
distinguish using as few queries as possible (with high confidence) between the case that an input of
lengthm satisfiesR, and the case that the input isε-far from satisfyingR, i. e., the input differs in at
least anε-fraction of the bits from every string satisfyingR. In our context the inputs are Boolean, and
the distance fromR is measured by the minimum number of bits that have to be modified in the input to
make it satisfyR, divided by the input lengthm. For the purpose here we are mainly interested in tests
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that have a number of queries that depends only on the approximation parameterε and is independent
of the input length. Properties that admit such algorithms are calledtestable.

Blum, Luby, and Rubinfeld [7] were the first to investigate a question formulated in terms of property
testing, and Rubinfeld and Sudan [22] formally defined the general notion of property testing. Goldreich,
Goldwasser, and Ron [16] investigated property testing in the combinatorial context, where they first
formalized the testing of combinatorial objects such as graphs. In recent years the field of property
testing has enjoyed rapid growth, as witnessed in the surveys of Ron [21] and Fischer [11].

Since even a correct input may have a small amount of noise, Parnas, Ron, and Rubinfeld [19]
have recently started investigating property testing algorithms which are guaranteed to accept (with
high confidence) not only inputs that satisfy the property, but also inputs that are sufficiently close to
satisfying it. The following formal definition highlights this distinction.

Definition 1.1. Given a propertyR, anε-testfor R is a randomized algorithm that is guaranteed to accept
with probability at least23 any input that satisfiesR, and is guaranteed to reject with probability at least
2
3 any input that isε-far from satisfyingR. We say that the property istestableif for every ε > 0 there
exists anε-test whose number of queries is independent of the input sizem.

A 1-sidedε-test for R is anε-test as above that in addition is guaranteed to accept any input that
satisfiesRwith probability 1.

A tolerant(ε,δ )-testfor R is anε-test forR that in addition is guaranteed to accept with probability
at least23 any input that isδ -close to satisfyingR, where an input is said to beδ -close to satisfying R
if it is not δ -far from satisfyingR. We say that a property istolerantly testableif for every ε > 0 there
exists a constantδ > 0 for which there exists a(ε,δ )-test whose number of queries is independent ofm.

Many properties that are testable as per the definition above are also tolerantly testable. Alon et
al. [1] implicitly give tolerant tests for the testable graph properties, and such tests also follow from
the canonical testing result of Goldreich and Trevisan [17]. Fischer and Newman [14] prove an even
stronger result that every testable graph property is also(ε,δ )-testable foranyδ < ε, showing that for
the dense graph model testability in fact implies that the distance of an input graph from a property can
be estimated using a number of queries that depends only on the additive approximation term.

For non-Boolean properties there are easy examples of properties where the number of queries re-
quired for anε-test may be much smaller than the number required for an(ε,δ )-test. Consider the
following example that uses bounds on testing invertability and inverseness of functions, implicit in the
works of Erg̈un et al. [9] and Erg̈un, Kumar, and Rubinfeld [10] about testing for element distinctness
and multiset equality. Consider the property of a sequence ofn2 numbers consisting of (the representa-
tion of) n−1 copies of a functionf : {1, . . . ,n}→ {1, . . . ,n} and one copy of its inverse functiong. An
easy test follows from uniformly sampling valuesi and checking that indeedf (g(i)) = g( f (i)) = i (as
well as sampling from the supposedn−1 copies off and checking that they agree with each other on
i). On the other hand, a tolerant test would have to ignore the representation ofg altogether because the
encoding ofg makes up only a tiny part of the total input, and testing whether a functionf has some
inverse is hard.

If we try to directly convert such examples to properties of Boolean functions, for example by taking
the Boolean representation of the values off andg, then with some tweaking we can see a difference
in the number of required queries between a tolerant and an intolerant test, but it will typically be
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between two different constants. This still leaves open the question of whether every property, for which
there exists a (constant query complexity)ε-test for everyε > 0, admits also constant query complexity
tolerant tests. In this paper we prove that this is not the case, and construct properties that admit intolerant
tests with a constant number of queries but admit no such tolerant tests.

Theorem 1.2. There exists a property R, such that for everyε there exists anε-test for R making a
number of queries that depends only onε (and not on the input size), while for every constant0< δ < 1

4
and q there exists no tolerant(1

4,δ )-test making only q queries (for large enough inputs).

The proof of the above combines results from several topics of property testing, including one of
the very first results in this field, linearity testing [7]. Alternatively, using the recently constructed
Probabilistically Checkable Proofs of Proximity by Ben-Sasson et al. [5] we can prove a strengthening
of Theorem1.2.

Theorem 1.3. There exists a property R, such that for everyε there exists anε-test for R making a
number of queries that depends only onε (and not on the input size), while there exists a constant c> 0
such that for every constant0 < δ < 1

4 there exists no tolerant(1
4,δ )-test making only nc queries (for

large enough inputs).

The proof ofTheorem1.3relies on the heavy machinery of Probabilistically Checkable Proofs. We
present its proof following a separate direct proof ofTheorem1.2 (which, if analyzed carefully, would
have given anΩ(log logn) lower bound on the query complexity).

The rest of the paper is organized as follows. InSection2 we present the basic building blocks for
the proof ofTheorem1.2, for which we need results that were proven all throughout the history of the
field, and inSection3 we string them together provingTheorem1.2. Section4 contains the proof of
Theorem1.3, which gives better lower bounds but requires less direct methods.

These results originally appeared in the Proceedings of the 20th IEEE Conference on Computational
Complexity [12].

2 Preliminaries

We base our first property on Hadamard codes and long codes. In the following we somewhat abuse
notation, and when clear from context refer by the word “code” both to a legal codeword, and to the
set of all allowed codewords. In particular, the term “a property of a code” refers to a subset of the
set of codewords. In the following we will use the fact that some properties of codes are testable (i. e.
there exists anε-test for the property in the usual sense if we know in advance that the input is a legal
codeword), while other properties of codes are not testable.

A Hadamard codeis a stringx of length 2n, for which there exists a stringy of lengthn such that for
everyi theith bit of x is equal toy· i (where we use the binary representation ofi, and the “dot product” is
defined overZ2 asa·b=

⊕n
j=1a jb j ). Equivalently, a stringx is a Hadamard code if and only iff (i) = xi

is a linear function overZ2. We shall use the two definitions interchangeably.
Let f1, . . . , f22n be an enumeration of all of the functions on inputs of lengthn, according to the lexi-

cographic order on the sequence of their values on the domain{0,1}n. A long codeis a stringx of length
22n

such thatxi = fi(y) for every j for some fixedy of lengthn. Here too there is a useful equivalence.
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The stringx is a long code if and only ifg(i) = xi is a dictator function, i. e., when there exists aj for the
aboveg : {0,1}2n → {0,1} such that for allz∈ {0,1}2n

, g(z) = zj (note that in particular a long code is
also linear). We get the correspondence by settingg(i) = fi( j). The extreme redundancy of long codes
has proven itself to be very useful in complexity theory, for example in the optimal inapproximability
results of H̊astad [18].

The possibility for testing that a function is a Hadamard code in fact stems from one of the very first
results in the field of property testing.

Lemma 2.1 ([7]). For everyε, the property that a Boolean function f: {0,1}n → {0,1} is linear (over
the fieldZ2) is testable with a1-sided test using a number of queries that depends only onε.

Since the property that a functionh : {0,1}n → {0,1} is a Hadamard code of somey = b1, . . . ,bn is
identical to the property ofh being linear overZ2, we can use the above for testing this. Testing for long
codes follows from somewhat more recent results.

Lemma 2.2 ([4, 20]). For everyε, the property that a Boolean function f: {0,1}m→{0,1} is a dictator
function is testable with a1-sided test using a number of queries that depends only onε.

Properties of long codes of binary strings can be easily tested for, since a proper long code of a
string contains its corresponding value for every possible function. Thus, given a codeL, we can test
it by looking at its value for the function that describes the tested property itself. Further details are
provided in the proof ofLemma3.1below.

On the other hand, there exist properties of Hadamard codes that are hard to test. Such properties
have been used to prove the existence of properties that can be easily tested only using a quantum
algorithm, by Buhrman, Fortnow, Newman, and Röhrig [8], and another property of Hadamard codes
with additional features was implicitly used also by Fischer et al. [13].

Lemma 2.3 ([8]). There exist properties of Hadamard codes that cannot be1
3-tested (even by a2-sided

test) with a constant number of queries.

The work of Fischer et al. [13] implies that one cannot distinguish with a constant number of queries
between a linear Boolean function depending on exactlyb1

2nc variables and one that depends on exactly
b1

2nc+2 variables, and so the property of being a Hadamard code of a string with exactlyb1
2nc nonzero

bits is not testable.
We use such a property of a Hadamard code because it will always yield an easy “long-code assisted

test,” despite the Hadamard code being hard to test in an “unassisted” manner. In essence, our input is
supposed to contain a Hadamard code and a long code that extends the Hadamard code (i. e. both codes
encode the same “original value”). Using the discussion above together with the self-correction features
of Hadamard codes and long codes, we will show how to create a test by checking the Hadamard code
against the long code, and then testing the long code for our property. However, we cannot test the
Hadamard code alone if we are not allowed to look at the long code.

The notion of “assisted tests” reminds one of the essence of the work of Ergün, Kumar, and Rubin-
feld [10] and Batu, Rubinfeld, and White [3], only here the “witness” can have exponential size because
we can do weighting by replication. For the construction with the better lower bounds, we will use a
strong result of Ben-Sasson et al. [5] about assisted tests.
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With all the above components in hand, we are now ready to construct a property that has an easy
test but not a tolerant one.

3 Proof of Theorem1.2

In the following, for a parametern, we consider inputs whose size is(2n +1)22n
. We consider the input

as composed of one functionL from the set of functions{ f | f : {0,1}n →{0,1}} to {0,1} (the function
L takes 22

n
bits to write down), andl = 22n

functionsh1, . . . ,hl from {0,1}n to {0,1} (each such function
takes 2n bits to write down), where all functions are represented by their truth tables.

We pick a propertyU of Hadamard codes that satisfiesLemma2.3, and defineProperty Ras the
property of the input satisfying the following:All the functions h1, . . . ,hl are identical and are equal to
a Hadamard code of some x∈ {0,1}n that satisfies property U, and the function L is the long code of
this same x.

Lemma 3.1. Property R admits a1-sidedε-test with a constant number of queries for everyε.

Proof. We assume thatε < 1
8, and do the following.

• Repeating independently 100ε−1 times, we select a uniformly randomx ∈ {0,1}n, a uniformly
random 1≤ i ≤ l , and check that the bit corresponding toh1(x) is indeed equal to that ofhi(x). If
any of these checks fails, we reject the input.

• UsingLemma2.1 we perform a1
2ε-test ofh1(x) for the property of being a linear function (i. e.

being a Hadamard code of someb1, . . . ,bn). We amplify the success probability of the test to19
20,

so that the probability of a false positive answer will be no greater than1
20.

• Using Lemma2.2 we perform anε-test ofL( f ) for the property of being a long code of some
x∈ {0,1}n. Again we amplify the success probability of the test to19

20.

• Denote for anyy ∈ {0,1}n by χy : {0,1}n → {0,1} the corresponding Hadamard code (i. e. for
y = (a1, . . . ,an), we setχy(b1, . . . ,bn) =

⊕n
i=1aibi). We perform 100 iterations of the following:

We select a uniformly randomy ∈ {0,1}n, a uniformly randomf : {0,1}n → {0,1}, and check
thath1(y) = L( f )⊕L( f ⊕χy), rejecting the input if any of the checks fail.

• Now let u(x) : {0,1}n → {0,1} denote the indicator function of PropertyU , i. e. u(x) = 1 if and
only if the Hadamard code ofx satisfies PropertyU . We now perform 100 iterations of choosing
a uniformly randomf : {0,1}n → {0,1}, and checking thatL( f )⊕L( f ⊕u) = 1, rejecting if any
of these checks fail.

On one hand, it is clear that an input that satisfies PropertyRwill be accepted with probability 1. On
the other hand, if an input is accepted with probability at least2

3, then all of the following hold.

• The portion of the input that corresponds toh2(x), . . . ,hl (x) is 1
2ε-close to beingl −1 copies of

the functionh1(x).
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• h1(x) is 1
2ε-close to being the Hadamard code of some(b1, . . . ,bn) ∈ {0,1}n. With the previous

item this means that the restriction of the input toh1(x), . . . ,hl (x) is ε-close to beingl copies of
the Hadamard code ofb1, . . . ,bn.

• L( f ) is ε-close to being a long code of some(c1, . . . ,cn) ∈ {0,1}n.

• (b1, . . . ,bn) = (c1, . . . ,cn). Otherwise every iteration of the check in the fourth item above would
fail with probability at least18. This is since doing such a check between an actual Hadamard code
and an actual long code of differing strings would fail with probability1

2; the additional loss of38
in the probability is becauseh1(x) is only guaranteed to be116 close to being the Hadamard code
of b1, . . . ,bn, andL( f ) is only guaranteed to be18-close to the long code ofc1, . . . ,cn.

• b1, . . . ,bn satisfy PropertyU (and with the above items this means that the input as a whole is in
fact ε-close to satisfying PropertyR). The reason is that otherwise every iteration of the check in
the fifth item of the test would fail with probability at least 1−2ε > 3

4.

The above complete the proof of the test.

Lemma 3.2. There exist no constantsδ and q, for which property R can be(1
4,δ )-tested for every n

using only q queries.

Proof. We may assume thatδ < 1
12. We show that if there exists a(1

4,δ )-test forR, then for every large
enoughn there exists a1

3-test forU (not necessarily a tolerant one) making onlyq queries, which is
known not to exist byLemma2.3.

Given an inputh : {0,1}n →{0,1} which we would like to test for PropertyU , we construct an input
for PropertyR as follows:h1, . . . ,hl will all be identical toh, andL will be arbitrarily set to the all-zero
function. Note that any single query to the new input can be answered by making a single query (or no
query) to the original input.

The next thing to note is that forn large enough, ifh satisfiesU then the new input isδ -close to
satisfyingR, because forn large enough the number of bits in the functionL is less than aδ -fraction
of the total number of bits in the input, whileh1, . . . ,hl clearly satisfy all requirements not concerning
L in the definition ofR. On the other hand, if the new input is1

4-close to satisfying PropertyR, thenh
is necessarily13-close to satisfying PropertyU , because of what the definition of PropertyR states for
h1, . . . ,hl . We thus obtain our13-test forU .

The above two lemmas complete the proof ofTheorem1.2.

4 PCPs of Proximity andTheorem1.3

This section gives a proof ofTheorem1.3that strengthensTheorem1.2. We first define the construction
and cite the main lemma that we will use.

Property testing has some common origins with Probabilistically Checkable Proofs, and Ergün et
al. [10] and Batu et al. [3] investigated this connection further, with regards to using a PCP witness for
an input.
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Definition 4.1. Given a promise problem and a Boolean inputv1, . . . ,vn, a (1-sided)PCP witnessfor the
problem is a set of functionsf1, . . . , fl , wherel is polynomial inn, satisfying the following.

• Each of the functions has a number of variables bounded by a constant independent ofn, that may
include variables fromv1, . . . ,vn as well as from an additional set of (polynomially many) Boolean
variablesw1, . . . ,wm.

• If v1, . . . ,vn should be accepted according to the promise problem, then there exists an assignment
to w1, . . . ,wm that together withv1, . . . ,vn satisfies all the functionsf1, . . . , fl .

• If v1, . . . ,vn should be rejected according to the promise problem, then there exists no assignment
to w1, . . . ,wm for which more than1

2 l of the functions are satisfied.

A PCP of Proximityis a PCP witness for the promise problem of accepting all inputs that satisfy a
given propertyP, and rejecting all inputs that areε-far fromP for a given distance parameterε.

A recent strong result, concerning the existence of PCPs of Proximity for all properties decidable in
polynomial time, is given by Ben-Sasson et al. [5].

Lemma 4.2 (Special case of [5]). If P is a property of v1, . . . ,vn that is decidable by a circuit of size k,
and t< log logk/ log log logk, then there exists a PCP of Proximity for P with distance parameter1/t.
Moreover, the number of additional variables and the number of functions are both bounded by k2, and
each function depends on O(t) variables.

On the other hand, there is a plethora of lower bound results for properties which belong to low
complexity classes (e. g. [2, 6, 15]) and most of them would work fine for us. We will choose the
propertyU = {uuRvvR | u,v∈ {0,1}∗}, wherewR denotes the reversal of the wordw.

Lemma 4.3 (Alon et al. [2]). Property U can be computed in polynomial time, while any1
3-test for U

requires at leastΩ(
√

n) queries (where n is the input size).

We let p(n) be a polynomial bound on the circuit size for deciding PropertyU on inputs of sizen.
To construct the property to fulfillTheorem1.3, we first assume without loss of generality that

n divides p(n) and settn = blog log logp(n)c, so in particulartn < log logp(n)/ log log logp(n) for a
sufficiently largen. We consider inputs of sizen(p(n))2. We label the first(n− tn)(p(n))2 bits by
(vi, j)1≤i≤n,1≤ j≤(n−tn)(p(n))2/n, and the rest of the bits by(wi, j)1≤i≤(p(n))2,1≤ j≤tn. We defineProperty Ras
the set of inputs satisfying all of the following.

• For everyi, 1≤ i ≤ n, and j, 1< j ≤ (n− tn)(p(n))2/n, vi,1 = vi, j (so we have(n− tn)(p(n))2/n
copies of the same string).

• v1,1, . . . ,vn,1 satisfy PropertyU .

• For every j, 1≤ j ≤ tn, w1, j , . . . ,w(p(n))2, j is an assignment satisfying the PCP of Proximity for
Property U (fromLemma4.2) with distance parameter 1/ j, with regards tov1,1, . . . ,vn,1.

We now prove that this is the required property.
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Lemma 4.4. Property R is (non-tolerantly) testable.

Proof. For everyε we show how forn large enough we canε-test forR using a constant number of
queries (and for smallern we can just read the entire input). We assume thatε < 1

8 and thatn is large
enough to satisfytn > 3/ε, and do the following.

• Repeating independently 100ε−1 times, we select a uniformly randomi, 1≤ i ≤ n, a uniformly
random j, 1 < j ≤ (n− tn)(p(n))2/n, and check thatvi,1 = vi, j . If any of these checks fails, we
reject the input.

• For j = d3/εe, for 100 iterations we select a uniformly randomi, 1≤ i ≤ l (wherel is the number
of functions in the corresponding PCP of Proximity fromLemma4.2), and each time test that the
function fi is satisfied byv1,1, . . . ,vn,1 andw1, j , . . . ,w(p(n))2, j .

This test makes a constant number of queries, as the PCP of Proximity was invoked with a distance
parameter that depends only onε. It is also clear that if the input satisfies PropertyR, then it is accepted
by this tester with probability 1.

On the other hand, if the input is satisfied with probability at least1
3, thenv1,1, . . . ,vn,1 is 1

3ε-close to
somev′1,1, . . . ,v

′
n,1 satisfying PropertyU , and the rest of thevi, j are 1

3ε-close to satisfying the equalities

with v1, j and thus are23ε-close to being copies of thev′1,1, . . . ,v
′
n,1. But as thewi, j form less than a13ε

fraction of the total input size, this means that the input isε-close to satisfying PropertyR.

Lemma 4.5. There exists some c> 0, so that there exists noδ for which Property R can be(1
4,δ )-tested

with nc queries.

Proof. We assume thatδ < 1
12. Let c1 > 0 be such that PropertyU cannot be1

3-tested withnc1 queries,
and letc2 > 0 be such thatn(p(n))2 < n1/c2 for n > 1. We setc = c1c2, and prove that a(1

4,δ )-test
with nc queries for PropertyR implies (for alln large enough) a13-test withnc1 queries for PropertyU ,
leading to a contradiction.

Given an inputv1, . . . ,vn which we would like to1
3-test, we construct an input of sizen(p(n))2 to test

for PropertyRas follows. We setvi, j = vi for all 1≤ i ≤ n and 1≤ j ≤ (n− tn)(p(n))2/n, and arbitrarily
setwi, j = 0. As inSection3, it is clear that a query to the new input can be simulated by performing at
most one query to the original input. Also, forn large enough, ifv1, . . . ,vn satisfy PropertyU then the
new input isδ -close to satisfying PropertyR (because thewi, j form less than aδ fraction of the input
bits). On the other hand if the new input is1

4-close to satisfying PropertyR then the original input was
1
3-close to satisfying PropertyU .

The above implies that a(1
4,δ )-test for PropertyR that makes at most(n(p(n))2)c < nc1 queries

would yield a1
3-test for PropertyU that makes at mostnc1 queries, a contradiction.

The above two lemmas complete the proof ofTheorem1.3.

A concluding comment

Theorem1.3 gives an example of a testable property for which there is annc lower bound for tolerant
(ε,δ )-testing, for some fixedε and any constantδ . It would be interesting to know whether there exists
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any (non-tolerantly) testable Boolean property for which any tolerant test requires alinear number of
queries. Either a positive or a negative answer would likely have interesting effects, because of the
connection explored here between tolerant testing and PCPs of Proximity.
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