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Abstract: We consider the maximization version of the edge-disjoint path problem (EDP).
In undirected graphs and directed acyclic graphs, we obtain anO(

√
n) upper bound on the

approximation ratio wheren is the number of nodes in the graph. We show this by es-
tablishing the upper bound on the integrality gap of the natural relaxation based on mul-
ticommodity flows. Our upper bound matches within a constant factor a lower bound of
Ω(
√

n) that is known for both undirected and directed acyclic graphs. The best previous
upper bounds on the integrality gaps wereO(min{n2/3,

√
m}) for undirected graphs and

O(min{
√

nlogn,
√

m}) for directed acyclic graphs; herem is the number of edges in the
graph. These bounds are also the best known approximation ratios for these problems. Our
bound also extends to the unsplittable flow problem (UFP) when the maximum demand is
at most the minimum capacity.
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1 Introduction

The edge-disjoint path problem(EDP) in undirected graphs is defined as follows. We are given an
undirected graphG = (V,E) andk node pairss1t1,s2t2, . . . ,sktk (a pair can occur multiple times). The
decision version asks if there is a collection of edge-disjoint pathsP1,P2, . . . ,Pk such that for 1≤ i ≤ k,
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Pi is a path fromsi to ti . We consider the maximization version where we seek to find the largest subset
of the k pairs that can be connected by edge-disjoint paths. In the weighted case, each pairsiti has a
non-negative weightwi and we seek to find the largest weight subset of pairs to connect. In the directed
version, thearc-disjoint path problem, each demand consists of an ordered pair(si , ti) and we require a
directed path fromsi to ti . For expediency, however, we refer to all versions as EDP. We also consider
a generalization of EDP called theunsplittable flow problem(UFP). In this problem the edges of the
graphG have non-negative integer capacities given by a functionc : E → Z+ and each of thek pairs has
an integer demand,di for pair i. A subsetS of the pairs isrouted if there is a path collectionPi , i ∈ S
such thatPi connectssi to ti and for each edgee∈ E, ∑i∈S:e∈Pi

di ≤ c(e). We say that an instance of UFP
satisfies theno-bottleneckassumption ifdmax = maxi di ≤ minec(e) = cmin. Note that EDP is a special
case of UFP withdi = 1, 1≤ i ≤ k andc(e) = 1, e∈ E. We refer to the special case of UFP when only
thedi ’s are 1 ascapacitated EDP.

EDP and UFP are fundamental problems in combinatorial optimization and also arise in a number
of applications. These problems are strongly NP-hard even in very restricted settings and also hard to
approximate. Consequently there is a large body of literature on special cases and variants. The natural
multicommodity flow relaxation (seeSection2 for more details) plays an important role in providing an
upper bound on the optimum value. In this paper we focus on approximation algorithms and integrality
gaps of the flow relaxation for arbitrary instances.

We briefly review known results for general graphs. For a more comprehensive view, including
results for special classes of EDP, see [7, 10, 17, 11]. In discussing results for EDP we normally assume
that the underlying graph is a simple graph and usen andm to refer to the number of nodes and edges
(arcs) respectively. For EDP it is known that the integrality gap of the flow LP isΩ(

√
n) even in

undirected planar graphs [8]. A first upper bound on the approximation ratio for EDP wasO(
√

m) [10].
This also holds for capacitated EDP and in fact can be obtained using a simple greedy algorithm that
iteratively picks an arbitrary unconnected pair and picks a shortest feasible path for it [12, 9, 14]. The
best upper bound on the integrality gap for EDP isO(min{n2/3,

√
m}) in undirected graphs [4] and

O(min{n2/3 log1/3n,
√

m}) in directed graphs [18]. It has been an interesting open problem to bridge
the gap between the upper and lower bounds on the integrality gap for EDP. In [4], the greedy algorithm
was combined with an algorithm based on single source flow (for a special class of instances called
v-separable instances) to obtain a bound ofO(

√
nlogn) in directed acyclic graphs (DAGs). Guruswami

et al. [9] showed that EDP in directed graphs is hard to approximate within a factor ofO(m1/2−ε) unless
P = NP. Their result applies to sparse graphs, and hence as a function ofn, it establishes a hardness
factor ofΩ(n1/2−ε). Ma and Wang [15] showed that EDP in DAGs is hard to approximate within a factor
of Ω(2log1−ε n) unlessNP⊆ DTIME(npolylog(n)). For undirected graphs, Andrews et al. [1] showed that
EDP is hard to approximate within a factor ofΩ(log1/2−ε n) unlessNP⊆ ZPTIME(npolylog(n)). In [4]
it was conjectured that that the approximation threshold for EDP in directed graphs and the integrality
gap of EDP in undirected and directed graphs isΘ(

√
n). Here we improve the upper bound toO(

√
n)

for undirected graphs and DAGs. In fact we prove the following stronger result.

Theorem 1.1.The integrality gap of the relaxation based on multicommodity flows isΘ(
√

n) for capac-
itated EDP in undirected graphs and DAGs.

Algorithms for UFP have typically been based on those for EDP. We distinguish between instances
that satisfy the no-bottleneck assumption and those that do not. First we discuss the general case where
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dmax can be larger thancmin. The best upper bound known in this case isÕ(
√

mlogdmax/cmin) [9] even in
directed graphs. Azar and Regev [2] showed that unlessP= NP, UFP is hard to approximate in directed
graphs within a factor ofΩ(m1−ε) on sparse instances which translates to a hardness factor ofΩ(n1−ε)
as a function ofn. Note that the hard instances constructed in [2] have the property thatdmax/cmin is
exponential inm. For instances satisfying the no-bottleneck assumption, Baveja and Srinivasan [3] ob-
tained anO(

√
m) approximation. Kolman and Schiedeler [14] showed that ifwi = di then anO(

√
m)

approximation can be obtained even ifdmax≥ cmin. Under the same assumption on the weights, Kolman
[13] extended the EDP bounds in [4, 18] to UFP. It is known from the work of Kolliopoulos and Stein
[12] that, for a certain class of packing integer programming problems (PIPs) that they call column re-
stricted packing integer programs (CPIPs), the integrality gap for instances that satisfy the no-bottleneck
assumption is within a constant factor of the integrality gap for unit-demand instances (see [6] for some
refinements and extensions). From this we immediately obtain the following corollary toTheorem 1.1.

Corllary 1.2. The integrality gap of the relaxation based on multicommodity flows isΘ(
√

n) for no-
bottleneck instances of UFP in undirected graphs and DAGs.

We proveTheorem 1.1in Section3, after setting up some notation and proving a lemma on single
source flows inSection2. We remark that Thanh Nguyen [16] has independently obtained an approxima-
tion ratio ofO(

√
n) for DAGs, and subsequent to our work, obtained an alternativeO(

√
n) approximation

in undirected graphs.

2 Preliminaries

An instance of capacitated EDP consists of a graphG = (V,E), integer edge capacities specified byc :
E→ Z+, andk node pairss1t1,s2t2, . . . ,sktk. Each pairsiti has a non-negative weightwi and demanddi =
1. In a directed graph instance, the node pairs are ordered:(s1, t1),(s2, t2), . . . ,(sk, tk). For convenience
of notation we assume that any pair of nodes occurs at most once in the given instance. Aterminal is a
node that is the end point of some pair in the given instance.

Multicommodity flow LP formulation: For the given instance, we letPi denote the set of all paths
joining si andti in G, and letP = ∪iPi . The following multicommodity flow relaxation is used to obtain
an upper bound on an optimal solution to the given instance. For each pathP∈ P we have a variable
f (P) which is the amount of flow sent onP. We letxi denote the total flow sent on paths for pairi. The
LP relaxation is the following.

max
k

∑
i=1

wixi s.t

xi − ∑
P∈Pi

f (P) = 0 1≤ i ≤ k

∑
P:e∈P

f (P) ≤ c(e) ∀e∈ E

xi , f (P) ∈ [0,1] 1≤ i ≤ k,P∈ P
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We work with the above exponential size path formulation for discussion’s sake, but there is an
equivalent compact formulation that can be used for computational purposes. We also remark that for
any fixedε > 0, efficient combinatorial algorithms are known for obtaining a(1+ ε)-approximation to
the above LP. LetOPT denote the optimal value of the LP on a given instance. In a solution, we call a
pathP fractional if f (P)∈ (0,1), otherwisef (P)∈ {0,1} andP is integral. If the total weight of flow on
integrally routed paths is more thanOPT/2, then we already obtain a 2-approximation. The interesting
and difficult case is when the fractionally routed paths contribute most ofOPTand we focus on this case.
From standard polyhedral theory, the number of fractionally routed paths in a basic solution to the LP is
at mostm. Therefore we can assume thatc(e)≤ m for all edges. By making parallel copies of edges, in
the following, we assume that all edges inG have unit capacity.

2.1 Incremental augmentation of directed flow

Let G = (V,A,c) be a directed graph with integer arc capacities given byc. For S⊂ V, we denote by
δ

+
G (S), or simplyδ+(S) if G is clear from the context, the set of arcs(u,v) such thatu∈ Sandv∈V \S.

Similarly δ
−
G (S) denotes the set of arcs(u,v) with u∈V \Sandv∈ S. Let s1,s2, . . . ,sk be distinct nodes

(terminals) that seek to send flow to a sink nodet. A non-negative vector(b1,b2, . . . ,bk) is a feasible
flow vector if the terminals can route∑i bi flow to t with bi flow originating atsi for 1≤ i ≤ k. Let B be
the set of all feasible flow vectors. For a vectorb∈ B, let F(b) = ∑i bi denote thetotal flow. Forb∈ B
let I(b) be the index set of terminals that have integer flow, that is,i ∈ I(b) iff bi is an integer.

Theorem 2.1. Given b∈ B and j 6∈ I(b) with bj > 0, we can compute b′ ∈ B in polynomial time with
b′j = db je and F(b′)≥ F(b) such that

• b′` ≤ db`e for 1≤ `≤ k, and

• b′i = bi , for i ∈ I(b).

Proof. Let f be a flow that demonstrates the feasibility ofb. We obtain an auxiliary graphG′ from G
and f in the usual way: for each arca ∈ A with positive flow, we retain the arc inG′ if f (a) < c(a)
and assign it capacityc(a)− f (a). If f (a) > 0 we add a reverse arc ¯a in G′ of capacity f (a). In G′

we look for a directed path fromsj to eithert or some terminalsh with h 6∈ I(b)∪{ j}. If we can find
such a directed path, we can increaseb j while not changing the net flow out of any terminal inI(b), or
decreasing the total flow intot. If the augmenting path allows us to increaseb j to db je we are done.
Otherwise we find another augmenting path and repeat. We need only to show that ifb j is not integral,
then we can always find an augmenting path of the above type. Suppose not. LetSbe the set of all nodes
reachable fromsj in G′. It follows thatt and no terminalsh with h 6∈ I(b)∪{ j} belongs toS. Since no
arcs leaveS in G′, anya∈ δ

−
G (S) has zero flow, in other wordsf (a) = 0. Further, any arca∈ δ

+
G (S) is

at capacity,f (a) = c(a). This implies that∑a∈δ
+
G (S) c(a) = ∑i∈Sbi . Note that the only terminals inSare

sj and some terminals fromI(b). Thus the expression∑i∈Sbi cannot be integral sinceb j is not integral
while the rest of the summands are. This is a contradiction since∑a∈δ

+
G (S) c(a) is integral.
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3 Proof of Theorem 1.1

In this section, we proveTheorem 1.1. The proof for undirected graphs differs from that for DAGs but
they share a common initial phase. For simplicity of description, we focus on the cardinality case (wi = 1
for 1≤ i ≤ k). We discuss the extension to the weighted case later.

Consider an optimal multicommodity flow solution for a given instance of EDP and letf = ∑i xi be
the total flow in the solution. For each pairi we decompose its flow into flow paths (alternatively we
can simply use the flow paths given by the solution). Suppose more thanf/2 flow is routed on flow
paths of length at most

√
n. Then we can greedily build a solution of valueΩ( f/

√
n) as follows. First,

we remove all the flow on paths of length more than
√

n, by assumption we have at leastf/2 flow left.
Pick a flow pathP corresponding to some unrouted pair, say pairi. Route the pair along the pathP and
remove the edges ofP from the graph. In this process we discard all flow on paths that use any edge of
P as well as any flow on paths other thanP that carry flow for the pairi. Since the length of the pathP
is at most

√
n, the total flow that we discard is at most

√
n+1. Repeating this process until there is no

more flow ensures that we routeΩ( f/
√

n) pairs.
We now focus on the case when more thanf/2 flow is routed along paths of length greater than√

n. Let α = f/
√

n. If α ≤ 1, it suffices to route any one pair in the EDP instance to obtain anO(
√

n)
integrality gap. Otherwise, since each flow path is of length at least

√
n+1, by the pigeonhole principle,

there exists a nodev such that at leastf
√

n/n= α flow is routed throughv . Discard all flow that does not
go throughv; we show how to routeΩ(α) pairs using the flow that goes throughv. The algorithms for
the undirected and directed acyclic graphs differ in this second phase and we describe them separately.

The above scheme that combines the greedy analysis with the analysis for the case when a large
amount of flow is routed through a single nodev is from [4] where it was used to obtain anO(

√
nlogn)

approximation for the DAG case.
In the rest of the section, for convenience of notation, we will assume that a node in the graph is a

terminal of at most one of the pairss1t1,s2t2, . . . ,sktk. Otherwise, we can add dummy nodes to ensure
this property; note that we are aiming for a constant factor approximation in this second stage and hence
the increase in the number of nodes does not contradict our overall goal of anO(

√
n) approximation.

With this assumption, we can specify the pairs by a matchingM on the terminals.

3.1 Undirected graphs

Let xi denote the flow for pairi that is routed throughv. This implies thatsi andti each sendxi amount of
flow to v. For a terminala∈V we lety(a) denote its flow throughv, thusy(si) = y(ti) = xi . We have that
∑i xi = α. Given any 0< ε < 1/2, we either transformx into another feasible solutionx′ with several
additional properties or we can directly find an edge-disjoint routing forΩ(εα) pairs. In the former case,
we perform an additional step to recover an edge-disjoint routing forΩ(εα) pairs from the solutionx′.
The solutionx′ satisfies the following properties: (i) for 1≤ i ≤ k, x′i = 0 orx′i = 1−ε, (ii) ∑i x

′
i = Ω(εα),

and (iii) x′ is a feasible multicommodity flow for the pairs such that all flow still goes throughv. Suppose
we can obtain a solutionx′ with the properties described above. LetM′ ⊆ M be the matching on pairsi
such thatx′i > 0. LetX be the set of end points ofM′. We have that∑i x

′
i = (1−ε)|M′|= (1−ε)|X|/2. We

solve a single source flow problem in a modified graph obtained by adding a super-sinkt connected to
each terminala with an end point inM′ by a directed arc of capacity one; we find a maximum flow from
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v to t. By construction, there is a total flow of at least 2∑i x
′
i betweenv andt. Further, since the graph

has integer capacities, we can choose this maximum flow to be integral which induces a collection of
edge-disjoint paths fromv to a subset of terminalsX′ ⊂X where|X′| ≥ (1−ε)|X|. LetM′′ be the largest
sub-matching ofM′ induced by the terminals inX′. Simple calculations show that|M′′| ≥ (1−2ε)|M′|.
Hence, if we chooseε = 1/4, we obtain a matchingM′′ of sizeΩ(α) such that the end-points ofM′′ are
connected tov be edge-disjoint paths and hence the pairs corresponding toM′′ are routed inG.

The transformation: We accomplish the transformation ofx to x′ using a clustering scheme from [5].
For a graphH andγ ≥ 0, letγH denote the graphH with capacities of the edges set toγ. We find edge-
disjoint and connected subgraphs calledclusters G1 = (V1,E1),G2 = (V2,E2), . . . ,Gp = (Vp,Ep) with the
following properties. Each terminala is assigned to exactly one of the clusters withl(a) denoting the
index of the cluster that it is assigned to. Further for each clusterGi we ensure that 1/ε ≤∑a:l(a)=i y(a)≤
2/ε. It follows that p = Ω(εα). We give a sketch of the clustering scheme and refer the reader to [5]
for more details. Consider an arbitrary rooted spanning treeT of G. Let u be a deepest node inT such
that∑a∈Tu

y(a)≥ 1/ε; hereTu is the subtree ofT rooted atu. Let u1,u2, . . . ,uh be the children ofu in T
and letT i

u denote the subtree obtained fromTu by removing the childrenui+1, . . . ,uh and their subtrees
from Tu. Let j be the smallest index such that∑a∈T j

u
y(a) ≥ 1/ε. We letG1 be the graph induced by

the nodes inT j
u and set̀ (a) = 1 for all terminalsa∈ V(G1). By the choice ofu and j it follows that

∑a∈V(G1) y(a) ≤ 2/ε. We remove all nodes inG1 from T exceptu, reducey(u) to 0 if u is a terminal,
and apply the procedure above iteratively to create the required clusters. Note that the clusters are not
necessarily node-disjoint but they are edge-disjoint and connected. Once the clusters are formed, we
create a multi-graphC that has one node per cluster. For each pairsiti we add an edge between cluster
l(si) andl(ti) – this might be a self-loop ifl(si) = l(ti). We find a maximal independent set of edgesF in
this cluster graph – we note that we are allowed to pick a self-loop in the set. It is relatively easy to argue
that the cardinality of this set isΩ(p) using the fact that 1/ε ≤ ∑a:l(a)=i y(a) ≤ 2/ε for eachGi ; each
edge that is picked can eliminate other edges of total flow of at most 4/ε. Let F ′ be the set of self-loops
in F . We claim that the pairs associated with the edges inF ′ can be routed inG via edge-disjoint paths.
This follows because a self-loop corresponds to a pair with both end points in the same cluster; recall
that each cluster is connected and the clusters are edge-disjoint. Thus, if|F ′| ≥ |F |/2 we can routeΩ(p)
pairs. Otherwise we consider the pairs corresponding to the edges inF \F ′. Let Z be the terminals that
are the end points of the pairs corresponding to theseΩ(p) edges.

The terminal fromZ with l(a) = i is termed therepresentativefor clusterGi . We obtainx′ by setting
x′i = 1−ε for each pair with an end point inZ andx′i = 0 otherwise. To argue thatx′ satisfies the desired
properties, we observe that the terminals inZ can each simultaneously send a flow of(1− ε) to v, in
the following manner. The representative terminala in Gi can send one unit of flow to other terminals
in Gi such that a terminala′ ∈ Gi receives flow of at mostεy(a′). This follows from the fact thatGi is
connected and∑a′:l(a′)=i y(a′)≥ 1/ε. By scaling down the flow,a can send(1−ε) units of flow to these
same terminals in the graph(1− ε)Gi . Now each terminala′ in Gi that receivedεy(a′) flow can send it
to v. Note that initially each terminala′ in G could sendy(a′) flow to v, hence it can sendεy(a′) flow
to v in the graphεG. Since theGi ’s are edge-disjoint andε < 1/2, from the above description, we have
that the cluster representatives can each send(1− ε) flow each tov in the graphG. This finishes the
proof of the transformation.
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3.2 Directed acyclic graphs

The clustering scheme that was at the heart of the proof for the undirected graph case does not apply in
the directed graph setting. When the graph is acyclic, however, we can reduce the problem to a highly
structured instance called av-separable instance [4] as follows. LetG1 = G[V1] whereV1 is the set of
nodes that have a directed path tov in G. LetG2 = G[V2] whereV2 is the set of nodes that have a directed
path fromv in G. SinceG is acyclic,V1∩V2 = {v} and for any pair(si , ti) that sends flow throughv,
si ∈V1 andti ∈V2. Let H = G1∪G2. Note that all the flow for a pair(si , ti) that goes throughv in G is
routed entirely inH.

An O(logn) approximation forv-separable instances of EDP was shown in [4]. Here we provide a
constant factor approximation by iteratively applying the incremental flow augmentation procedure of
Section2.1to the graphsG1 andG2. Independent of our work, Nguyen [16] has shown thatv-separable
instances can in fact be solved exactly ifG1 andG2 are acyclic.

Let X = {(si , ti) | 1≤ i ≤ p} denote the set of source-sink pairs with non-zero flow that goes through
v and letxi denote the flow sent by(si , ti) throughv. Hence∑i xi = α. Let I be the subset of pairsi such
thatxi = 1. We describe an iterative procedure that modifies the original multicommodity flow through
v, f 0, to obtain flowsf 1, f 2, . . . , f h. In f j , we letx j

i denote the flow fromsi to ti . We ensure thatxh
i is

integral for 1≤ i ≤ k and∑i x
h
i ≥ bα/2c. To accomplish this, in thejth iteration we pick an arbitrary

pair` such thatx j
` ∈ (0,1). We stop if there is no such pair. We apply the incremental flow augmentation

algorithm fromTheorem 2.1twice. We apply it once to the graphG1 with v as the sink to augment the
flow of s̀ up to 1 without decreasing the flow of anysi with x j

i = 1. We apply it another time to the
graphG2 with v as the source, to augment the flow oft` up to 1 without decreasing the flow of anyti with
x j

i = 1. These two flow augmentations do not interfere with each other sinceG1 andG2 are disjoint. In
the augmenting procedure inG1 we might reduce the flow from somesi ’s to v in G1. Note, however, that
the total such lost flow inG1 is at most 1−x j

` < 1. Similarly we might reduce the flow fromv to someti ’s

in the procedure inG2. For any demandi affected in either augmentation, we setx j+1
i = min{bi ,b′i}≤ x j

i ,
wherebi ,b′i are the new flow values forsi , ti respectively after the augmentations. Thus the total loss of
flow to other pairs in phasej is at most 2(1−x j

`). Since we started withα units of flow, it follows that
we end up with at leastbα/2c pairs with unit flow each. SinceG1 andG2 are disjoint, the sources of the
chosen pairs can route their flow integrally tov and similarlyv can route flow to the sinks of the pairs
integrally. This yields the desired disjoint paths.

Weighted case: For both undirected and the DAG case, it is straightforward to modify the algorithms
to handle weights on the pairs. In each step where we have a choice of choosing an arbitrary pair, we
choose the pair with the largest weight. The analysis extends directly and we omit the details.

4 Conclusions

We showed anO(
√

n) upper bound on the integrality gap for EDP and UFP in undirected graphs and
DAGs. This matches the known lower bound within a constant factor. It is conjectured in [4] that the
integrality gap for directed graphs is alsoO(

√
n) and this remains an interesting open problem. Proving

this in the affirmative would essentially settle the approximability of EDP in directed graphs.
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