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Abstract: We present a new method for proving rank lower bounds for the cutting planes
procedures of Gomory and Chvátal (GC) and Lov́asz and Schrijver (LS), when viewed
as proof systems for unsatisfiability. We apply this method to obtain the following new
results: First, we prove near-optimal rank bounds for GC and LS proofs for several promi-
nent unsatisfiable CNF examples, including random kCNF formulas and the Tseitin graph
formulas. It follows from these lower bounds that a linear number of rounds of GC or LS
procedures when applied to the standard MAXSAT linear relaxation does not reduce the
integrality gap. Second, we give unsatisfiable examples that have constant rank GC and
LS proofs but that require linear rank Resolution proofs. Third, we give examples where
the GC rank isO(logn) but the LS rank is linear. Finally, we address the question of size
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versus rank; we show that, for both proof systems, rank does not accurately reflect proof
size. Specifically, there are examples which have polynomial-size GC/LS proofs but require
linear rank.

1 Introduction

Integer linear programming is the problem of optimizing a linear objective function over the integral
points of a given (bounded or unbounded) polyhedron. In his seminal paper, Khachian [31] proposed
the ellipsoid method for (nonintegral) linear programming, showing that the optimization problem over
a polytope is polytime. The additional integrality constraints change the complexity of the problem
dramatically: it is well-known that general integer LP is NP-hard. In both the unrestricted and the
integral cases, one can also look at feasibility problems instead of at optimization problems. Here, the
question is whether a polytope given by a set of linear inequalities is empty. The feasibility problem
is closely related to the linear optimization problem, and here too the nonintegral version (checking
whether the polytope contains any points at all) is easy while the integral one is NP-complete.

Cutting planes methods for integer linear programming are instrumental in bridging the gap between
the true, computationally complex structures (the integral solutions to the problem, or, rather, their
convex hull) and their relaxed counterpart, which are generally simple polytopes that contain the convex
hull of the integral solutions but also contain other, extraneous nonintegral points. These are methods in
which the initial, relaxed polytopeP is transformed through a sequence of ever-decreasing (contained)
polytopes to the integral hull ofP, i.e. the smallest polytope containing the integral points ofP. In
this sequence, a polytope is produced from its predecessor by using the integrality constraint locally.
A simple example of this kind of reasoning is that if one knows that a certain coordinate is at leastβ ,
then a stronger conclusion, that this coordinate is at leastdβe, is valid for the integral hull ofP. For
optimization problems this sequence of polytopes produces a sequence of optimal values that get closer
and closer to the desired optimal integral solution, and for feasibility problems, the sequence terminates
with the empty polytope if and only if the initial polytope contained no integral points. In either case,
then, it seems natural to view this sequence as a proof, either of optimality or of infeasibility.

From the complexity standpoint, there are three important desirable properties of the above se-
quence: (i) the local operations transforming a polytope to its successor are efficient (ii) the length of
the sequence is small, and (iii) there is an efficient algorithm producing the sequence. Properties (i) and
(ii) guarantee a small size proof, while (iii) guarantees that we can find the proof efficiently if it is small.

In this paper, we study several prominent cutting planes methods: Gomory-Chvátal cuts [10, 22],
and a collection of “matrix-cut” or “lift-and-project” operations defined by Lovász and Schrijver [33].
These methods are currently among the most important techniques for solving or approximating a range
of NP-hard 0/1 optimization problems. There are two standard complexity measures of interest for these
procedures: rank and size. The size is the total number of cut operations that must be applied and the
rank is the total number of rounds of cut operations that must be applied. Rank, therefore, measures the
amount of inherent sequentialism in the proof.

Superpolynomial lower bounds on size for a cutting planes method are important since they show
thatanyalgorithm that produces a cutting planes proof will not be polynomial-time. Superpolynomial
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size lower bounds are known for the Gomory-Chvátal cutting planes method [34]. There are three
distinct types of matrix cuts defined by Lovász and Schrijver, LS0, LS and LS+. Exponential lower
bounds have been proven for LS0, the weakest of these [15, 16]. For LS and LS+, no nontrivial size
bounds are known.

Rank is also a natural complexity measure when it comes to proofs. In some proof systems for
unsatisfiability, there is a natural rank-based procedure for generating a proof which is practical in certain
cases. For example, a rank-based method for Resolution is the familiar Davis-Putnam procedure [17],
and a rank-based method for the Polynomial Calculus is a variation on the Gröbner basis algorithm [13].
In both of these cases, it is important that it can be determined if there is ad-round/rank derivation in
time at mostnO(d). It turns out that matrix cut systems have a somewhat similar property and therefore
rank is a particularly interesting measure in this case. In [33] it was shown that for any polytopeP, there
is an algorithm for optimizing overP(r) in time nO(r), whereP(r) is the polytope obtained by applying
r rounds of any of the LS methods andn is the total description size of the polytopeP. Using similar
arguments it can be shown that the same is true when considering the feasibility question rather than
optimization for LS and LS0. It follows that there is a deterministic algorithm that can ”search through”
all LS proofs of rankd in time nO(d). While this holds for other proof systems such as Resolution, it
is less obvious here because the number of faces in the rank-r polytope is not easily bounded, even for
smallr.

1.1 Our Results and Context

Prior to this work some limitations on the rank-based application of the LS procedure to the problem
of approximating vertex cover were shown [2]. In this paper, we study rank-based limitations of all the
above-mentioned cutting planes methods both in the case of feasibilty for polytopes defined by unsatis-
fiable CNF formulas and unsatisfiable sets of mod-2 linear equations and in the case of the optimization
problems MAXSAT and MAXLIN.

We present a new method for proving rank lower bounds that applies to both Gomory-Chvátal cutting
planes and matrix-cut proof systems. This method can be viewed as a game which produces a tree of
(nonintegral) points in the polytope, whose depth is a lower bound on the rank of the polytope in all of the
above proof systems. This game allows us to prove asymptotically tight rank bounds for many classes
of unsatisfiable boolean formulas, especially those which contain a certain measure of expansion, like
random kCNFs and the Tseitin principle on expander graphs. The idea of playing a game on expanding
CNFs to achieve proof-complexity lower bounds was largely pioneered by [6].

Result 1: The following holds for GC, LS0, LS and LS+:

(1) The Tseitin tautology on a graphH has rank at least(c−2)n/2, wherec is the edge-expansion of
H;

(2) Let k≥ 5. There exists a constantc such that, for all∆ > c, a random set of∆n k-mod-2 equations
overn variables requires rankΩ(n) with high probability;

(3) Let k≥ 5. There exists a constantc such that, for all∆ > c, a random set of∆n k-clauses overn
variables requires rankΩ(n) with high probability.
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Prior to our result, the only high-rank bounds for unsatisfiable boolean examples were for the clique-vs-
coloring ([34]) formulas in Gomory-Chv́atal cutting planes, and for the PHP in LS ([23]). Concurrently
with this work, however, [5] examined GC-rank and, in particular, proved a tight lower bound for the
PHP. Subsequent to our result, however, [1] improved the above result for the LS systems to require only
k≥ 3 in parts (2) and (3).

The integrality gapof a linear relaxation is the ratio of the optimal value of the relaxation to the
optimum over all integer points. If a linear relaxation of a boolean optimization problem has a small in-
tegrality gap, then it is feasible to approximate the optimum of the original problem by solving the linear
relaxation. We show that there are MAX-k-SAT and MAX-k-LIN examples where cutting planes proce-
dures are not helpful in the sense that after linearly-many rounds, the integrality gap of the relaxation of
the problem is still as big as possible.

Result 2: Let k≥ 5 and fix anyε > 0. LetF be a set ofΘ(n) randomk-mod-2 equations. The relaxation
that results from applyingΩ(n) rounds of GC, LS0, LS or LS+ to the standard MAX-k-LIN relaxation
of F has integrality gap at least 2− ε with high probability. Similarly, letC be a set ofΘ(n) random
k-clauses. The relaxation that results from applyingΩ(n) rounds of GC, LS0, LS or LS+ to the standard
MAX- k-SAT relaxation ofC has integrality gap at least2

k

2k−1 − ε with high probability.

To the best of our knowledge there were no results of this form (see also [2, 19]) that give hardness of
approximation for more than a logarithmic-number of rounds. Again, subsequently, [1, 38] has proven
linear rank lower bounds in the LS systems for various optimization problems, including MAX-3-SAT
and MAX-3-LIN. All of these results rule out a particular type of subexponential-time approximation
algorithm that works by applying a sublinear number of rounds of an LS system to the obvious LP
relaxation to generate an LP with small integrality gap. As noted by [1], many recent successes in
approximation algorithms can be viewed as applications of this algorithm. In particular, the SDP relax-
ations of the Goemans-Williamson maxcut approximation ([21]) and of the Arora-Rao-Vazirani sparsest
cut approximation ([4]) are implied by a constant number of rounds of LS+. While there are optimal
PCP results that rule out approximations of MAX-k-SAT and MAX-k-LIN by general algorithms [28],
these results rely on unproven complexity assumptions—the stronger the time lower bound desired, the
stronger the assumption must be. Our results are unconditional.

Finally, we give examples separating LS-, GC-, and Resolution-rank, and examples with polynomial-
size Resolution/GC/LS proofs, that require large rank.

Result 3: There are examples of unsatisfiable CNFs that have

(1) Constant LS and GC-rank, but linear Resolution-rank;

(2) Constant LS+-rank,Θ(logn) GC-rank, and linear LS-rank.

Result 4: There are examples of unsatisfiable CNFs that have

(1) Polynomial-size GC-proofs, but linear GC-rank;

(2) Polynomial-size LS-proofs, but linear LS-rank.

The rest of the paper is organized as follows. InSection2 we define the Resolution/GC/LS proof
systems, and give some background. InSection3 we provide a general scheme for proving rank lower
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bounds. InSection4 we prove rank lower bounds when the constraints are expanding.Section5 deals
with integrality gaps that are based on our rank lower bounds.Section6 gives various separation exam-
ples for LS-, GC-, and Resolution-rank.Section7 gives an example where both the Resolution/GC/LS
proof size and rank are polynomial. InSection8 we describe an algorithm for showing the unsatisfiabil-
ity of formulas of LS-rankd in timenO(d) based on the results of [33]. This section is largely expository
in that we suspect the results were known, but not written down in the generality we supply.

Finally, we would like to note that an extended abstract of this paper appeared in FOCS 2003 [9].
The results here are the same as in that version, but the exposition is more complete.

2 Definitions and Background

Resolution: Resolution proofs work with clauses, viewed as sets of literals. IfC andD are sets of
literals, then the clause(C∨D) is derivable from the clauses(x∨C) and(¬x∨D) by the Resolution
rule. A resolution refutation of a CNF formulaf is a sequence of clausesC1, . . . ,Cq such that each
clause is either a clause off , or follows from two previous clauses by the resolution rule, and the final
clause,Cq, is the empty clause. LetS be a resolution refutation of a CNF formulaf , represented as a
directed acyclic graph (with nodes corresponding to clauses). Thesizeof S is the number of clauses in
S; thedepthor rank of S is the length of the longest path in the directed acyclic graph. The resolution
size(or depth) of f is the minimal size (depth) over all resolution refutations off . S is tree-like if the
directed acyclic graph is a tree.

Proof systems based on linear programming:We describe several proof systems for systems of linear
inequalities where the values of the variables are restricted to be boolean. In these proof systems, we
begin with a polytopeP defined by linear inequalities associated with the logical formulation of the
problem. In the more common case of CNF-formulas we convert clauses to inequalities in the usual
way, i.e.

τ(`1∨·· ·∨ `k)≡ [τ(`1)+ · · ·+ τ(`k)≥ 1] ,

where each̀i is a literal andτ(x)≡ x andτ(¬x)≡ 1−x for each variablex. For example,τ(x∨¬y∨z)≡
x+(1−y)+z≥ 1. Notice that the 0/1 solutions to these inequalities are exactly the satisfying boolean
assignments to the formula. Relaxing to 0≤ xi ≤ 1 makes the set of solutions a polytope whose integral
points are the solutions to the original problem. The following fact is immediate, but will be important
later:

Proposition 2.1. Let C be a clause with at least two variables. Thenτ(C) is a linear inequality that is
satisfied if at least two of its underlying variables have value1

2.

We begin by describing Gomory-Chvátal (GC) cutting planes. This proof system is sometimes
referred to as simply Cutting Planes in the proof complexity literature. In what follows, letai ∈ Rn and
let x be a vector ofn variables. By〈 〉, we mean the standard inner-product. Consider the following two
rules: (1) (Linear combinations) From linear inequalities〈a1,x〉− b1 ≥ 0, . . . ,〈ak,x〉− bk ≥ 0, derive
∑k

i=1(〈λiai ,x〉−λibi) ≥ 0, whereλi are positive rational constants; (2) (Rounding) From〈a,x〉−λ ≥ 0
derive〈a,x〉− dλe ≥ 0, provided that the coordinates ofa are integers. Without loss of generality, we
can assume that a rounding operation is always applied after every application of rule (1), and thus we
can merge (1) and (2) into a single rule, called a GCcut.
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y≥ d1/2e

y≥ 1

z≥ 1 1−z≥ 1

0≥ 1

(1−y)+(1−z)≥ 1(1−y)+z≥ 1

2y≥ 1

y+(1−z)≥ 11−x≥ 1

y+z≥ 1

x+y+z≥ 1

Figure 1: A GC refutation

Definition 2.2. A GC refutation for a set of linear inequalitiesf = { f1, . . . , fm} is a sequence of linear
inequalities,g1, . . . ,gq such that eachgi is either an inequality fromf , or an axiom (x≥ 0 or 1−x≥ 0),
or follows from previous inequalities by a GC cut, and the final inequalitygq is 0≥ 1.

There are several cutting planes proof systems defined by Lovász and Schrijver, collectively referred
to as matrix cuts. These systems allow one to “lift” the linear inequalities to quadratic inequalities, and
then “project” back to linear inequalities using the fact thaty2 = y for y∈ {0,1}. Again, letai ∈ Rn and
let x be a vector ofn variables. The basic intuition of the following systems is that, if〈ai ,x〉−bi ≥ 0 is
valid for the integral hull ofP, then so are the inequalities(〈ai ,x〉−bi)x j ≥ 0, (〈ai ,x〉−bi)x j ≥ 0, and
(x2

j −x j) = 0 for eachj, sincex j ∈ {0,1}. Of course, we can’t directly use these quadratic inequalities
because it is generally NP-hard to solve the optimization or feasibility problem over such constraints, but
it might be helpful, and is certainly valid, to add any linear inequality that is a positive linear combination
of them.

Definition 2.3. Given a polytopeP⊆ [0,1]n defined by〈ai ,x〉 ≥ bi for i = 1,2, . . . ,m:

(1) An inequality〈c,x〉−d≥ 0 is called anN-cut for P if

〈c,x〉−d = ∑
i, j

αi j (〈ai ,x〉−bi)x j

+ ∑
i j

βi j (〈ai ,x〉−bi)(1−x j)

+ ∑
j

λ j(x2
j −x j) ,
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whereαi j ,βi j ≥ 0 andλ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n.

(2) A weakening ofN-cuts, calledN0-cuts can be obtained if, when simplifying to the linear term
〈c,x〉−d, we viewxix j as distinct fromx jxi .

(3) An inequality〈c,x〉−d is called anN+-cut if

〈c,x〉−d = ∑
i, j

αi j (〈ai ,x〉−bi)x j

+ ∑
i j

βi j (〈ai ,x〉−bi)(1−x j)

+ ∑
j

λ j(x2
j −x j)+∑

k

(〈hk,x〉+gk)2,

where againαi j ,βi j ≥ 0, λ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n andgk + 〈hk,x〉 is a linear function
for k = 1, . . . ,n+1.

The operatorsN, N0 andN+ are called thecommutative, non-commutativeandsemidefiniteopera-
tors, respectively. All three are collectively calledmatrix-cutoperators.

Definition 2.4. A Lovász-Schrijver(LS) refutation for a set of linear inequalitiesf is a sequence of
inequalitiesg1, . . . ,gq such that eachgi is either an inequality fromf or anN-cut for the polytope defined
by g1, . . . ,gi−1, and such that the final inequality is 0≥ 1. Similarly, a LS0 refutation usesN0-cuts and
LS+ usesN+-cuts.

Definition 2.5. Let P be one of the proof systems GC, LS, LS0 or LS+. Let f be an unsatisfiable set of
boolean inequalities and letSbe aP-refutation of f , viewed as a directed acyclic graph. The inequalities
in Sare represented with all coefficients in binary notation. Therefore, thesizeof such an inequality is
the sum of all the sizes of its coefficients. Thesizeof S is the sum of the sizes of all inequalities inS; the
P-size of f is the minimal size over allP refutations off .

The complexity measure with which we are primarily concerned is rank. It is defined not only for
unsatisfiable sets of boolean inequalities, but for sets of linear inequalities in general.

Definition 2.6. For a set of linear inequalitiesL that define a polytope inRn, let PL = P(0)
L be that

polytope. GivenP ∈ {GC,LS0,LS,LS+}, let P(i)
L denote the polytope defined by all inequalities that

can be derived in depthi from the initial inequalities inP. ClearlyP(i+1)
L ⊆ P(i)

L . Therank of L (or PL)

is the minimali such thatP(i)
L is the convex hull of the integral points inPL. Therank of a pointx∈ Rn

with respect toPL is the minimali such thatx /∈ P(i)
L .

That the rank of any bounded polytope in any of these proof systems is finite is a well-known fact
([22, 10, 33]). Note that, ifP contains no integral points, then the rank of the polytope is the maximum
rank of its points.
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2

(2y−1)(1−y)≥ 0y2−y≤ 0

y≥ 1

z≥ 1 1−z≥ 1

0≥ 1

(1−y)+(1−z)≥ 1(1−y)+z≥ 1

2y≥ 1

y+(1−z)≥ 11−x≥ 1

y+z≥ 1

x+y+z≥ 1

Figure 2: An LS refutation

Note that in our definition of these cutting planes systems, we can derive a new inequality from
any number of previous inequalities in one step, whereas for Resolution, we are restricted to fanin-
two. However, Caratheodory’s theorem tells us that for any set of vectorsV, any vector that is a positive
combination of vectors inV can be generated as a positive combination ofdim(V) such vectors. Viewing
inequalities as vectors, we see that a GC cut is a positive combination of vectors in dimensionn+ 1
and an LS (respectively LS0, LS+) cut is a positive combination of vectors in dimensionn2 + n+ 1.
Therefore, we can assume wlog that the fanin is at mostn+ 1 in GC andn2 + n+ 1 in LS, and so the
rank and size would not increase significantly if instead our proof systems were defined to have fanin 2.

Definition 2.7. Let P1 andP2 be two refutation systems. We say thatP1 p-simulatesP2 if there is
a polynomialp such that, for every unsatisfiable formulaf , sizeP1( f ) ≤ p(sizeP2( f )), wheresizeP( f )
denotes the size of the minimum refutation off in systemP.

2.1 Alternative definitions

The above definitions of the cutting planes methods lead one to visualize the process syntactically, in a
way similar to most proof systems. It is often helpful, however, to look at the dual definitions, which
indicate which points remain after applying one round of each of the methods. In fact, this is the way
they are usually viewed in optimization.

In general, for a polytopeP∈ [0,1]n, we letP′ be the points that remain after applying one round of
the cutting planes method in question.
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Definition 2.8. Given a polytopeP⊂ [0,1]n, the result of applying one round of GC cuts is

P′ = {x∈ P :〈a,x〉 ≥ dbe whenevera∈ Zn,b∈ R,

and〈a,y〉 ≥ b for all y∈ P} .

For the case of GC, it is not hard to see that for every polytope,P(1) = P′, and henceP(i+1) = (P(i))′

for everyi ≥ 0.
The dual definitions of the matrix-cut systems are most easily stated for theprojective cone, P ∈

Rn+1, of a polytopeP⊂ [0,1]n. That is,

P≡ {(a,a·w1, . . . ,a·wn) : a≥ 0 and(w1, . . . ,wn) ∈ P} .

If the coordinates ofRn arex1, . . . ,xn, we usually refer to this extra coordinate inP asx0. Note thatP
is exactly the intersection ofP with the hyperplanex0 = 1. Hence we will often refer to a pointw =
(w0,w1, . . . ,wn) in P\{0} projectedonto[x0 = 1]. This simply means the point(w1/w0, . . . ,wn/w0)∈P.

Definition 2.9. (i) A point w∈ Rn+1 is in P
′
for LS0 if there is an(n+1)× (n+1) matrixY such that

Ye0 = (eT
0Y)T = diag(Y) = w and, for alli, Yei ,Ye0−Yei ∈ P.

(ii) A point w is in P
′
for LS if (i) holds with the extra constraint thatY is symmetric.

(iii) A point w is in P
′
for LS+ if (ii) holds with the extra constraint thatY is positive semidefinite.

Definition 2.10. For any of LS, LS+, LS0, we defineP′ to beP
′∩ [x0 = 1].

To gain some intuition aboutDefinition 2.9, we prove the following useful fact:

Fact 2.11. Given a polytopeP∈ [0,1]n, after one round of LS0 we have

P′ =
n⋂

i=1

conv(P∩ [xi = 0],P∩ [xi = 1]) ,

whereconv() denotes the convex hull of its arguments.

Proof. ConsiderP and some pointw∈ P
′
. In the matrixY, the pointYei (when projected to[x0 = 1]) is

a point inP∩ [xi = 1] becauseYii = Y0i . Also,Ye0−Yei is a point inP∩ [xi = 0] becauseYi0 = Yii . The
fact thatYe0 = w forcesw to be a convex combination ofYei andYe0−Yei , for all i.

For the other direction, consider a pointw ∈ ∩n
i=1conv(P∩ [xi = 0],P∩ [xi = 1]). Say w = (1−

λi)w0
i +λiw1

i for eachi, wherew0
i ∈ P∩ [xi = 0], w1

i ∈ P∩ [xi = 1] and 0≤ λi ≤ 1. It is easy to check that

the matrix with 0-th column
(1

w

)
andi-th column

(
λi

λiw1
i

)
fulfills the requirements ofDefinition 2.9.

To see that the dual definitions for the matrix cut systems are equivalent to the initial definitions (that
is, P′ = P(1)) consult [15].
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2.2 What’s known about complexity

By definition LS p-simulates LS0 and LS+ p-simulates LS, and these simulations are rank preserving.
Moreover for unsatisfiable CNF formulas, GC, LS0, LS and LS+ can all p-simulate Resolution and
this simulation is rank-preserving [14]. It has also been shown that GC can p-simulate small-weight
LS0 [29]. In terms of negative results for simulations, the propositional pigeonhole principle (PHP)
provides a family of unsatisfiable CNF examples requiring exponential-size Resolution proofs [26] but
with polynomial-size GC, LS0, LS and LS+ proofs [14]. For GC and LS0, exponential size lower bounds
for one specific family of boolean examples are known [34, 16]. For LS and LS+, no superpolynomial
lower bounds are known.

Now let us review what is known with respect to rank. Every system of linear inequalities has a rank
n LS proof [33]. For GC, the rank of every polytope in the unit cube is at mostO(n2 logn) [18], and
moreover there are examples requiring GC-rank more thann [18]. However for unsatisfiable examples,
the GC-rank is at mostn [7]. For GC, linear rank bounds for unsatisfiable CNF examples were first
obtained in [11]; however, these examples have exponentially-many faces (inequalities) and thus the
rank is still small in the input size. Linear rank bounds for GC (as a function of the input size) for
unsatisfiable CNF examples were first proven in [30], and also follow from the size bounds [34]. For
LS, a wealth of rank lower bounds are known for the non-empty or non-CNF case (see, for example,
[33, 20, 36]). Otherwise, [23] prove linear rank lower bounds for the PHP. In summary, the only known
high-rank, unsatisfiable CNF examples were the clique-vs-coloring formulas for GC and the PHP for
LS. In this paper, we prove rank bounds for all of these proof systems for many unsatisfiable CNFs
satisfying certain combinatorial conditions.

3 Proving Rank Lower Bounds

In what follows, we give methods for proving rank lower bounds for many natural, polysize setsL of
contradictory linear inequalities. These lower bounds follow by characterizing some of the points in
P(i)

L that survive inP(i+1)
L . We call these characterizations “protection lemmas,” because they argue that

certain points are protected from removal in the next round provided certain other points survived the
previous round. These sorts of lemmas have been used in the past to prove rank lower bounds for specific
polytopes in specific cutting planes procedures (see [11, 20], for example). We develop a common
protection lemma that works for many examples in any of the proof systems we define. Moreover, we
define a simple, two-player game that uses this common protection lemma to establish lower bounds.

3.1 Protection Lemmas

We begin with some notation. Forx∈ Rn, e∈ {1, . . . ,n}, anda∈ R, we denote byx(e,a) the point that
is the same asx except that thee-th coordinate has valuea. For x∈ Rn, we denote byE(x) the set of
coordinates on whichx is non-integral.

Lemma 3.1 (GC Lemma). The following holds for GC: Let P be a bounded polytope inRn. Let
x∈ 1

2Zn, and let E= E(x) be partitioned into sets E1,E2 . . . ,Et . Suppose that for every j∈ {1,2, . . . , t}
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we can represent x as an average of vectors in P that are 0-1 on Ej and agree with x elsewhere. Then
x∈ P′.

Proof. Assume for contradiction thatx /∈ P′. Then there is a vectora ∈ Zn and a non integral scalar
b, such that〈a,y〉 ≥ b for all y∈ P and〈a,x〉 < dbe. Clearlyx∈ P, being an average of points in that
polytope. So〈a,x〉 ≥ b and it follows that〈a,x〉 must be in1

2 + Z. Thus∑e∈E(x) ae must be odd, and
since∑e∈E(x) ae = ∑i ∑e∈Ei

ae, there is aj such that∑e∈E j
ae is odd. Consider the set of vectorsV ⊂ P

that average tox and that differ fromx exactly onE j where they take 0/1 values. Since∑e∈E j
ae is odd

we can see that〈a,v〉 is integral for allv∈V. But then〈a,v〉 ≥ dbe. Sincex is an average of thev∈V,
we also get〈a,x〉 ≥ dbe. Contradiction.

The following lemma is immediate fromFact 2.11:

Lemma 3.2 (LS0 Lemma). The following holds for LS0: Let P⊂ [0,1]n be a polytope, and x be a point
in P. Then, if for every i∈ E(x) there is a set of points Si ⊂ P with i-th coordinate in{0,1} such that
x∈ conv(Si), then x∈ P′.

Lemma 3.3 (LS/LS+ Lemma ([20], Theorem 4.1)). The following holds for LS and LS+: Let P⊂
[0,1]n be a polytope, and x be a point in P. If, for every i∈ E(x), x(i,0),x(i,1) ∈ P, then x∈ P′.

Proof. Letx be the vector(1,x1, . . . ,xn)T and letA= x xT . A is certainly symmetric and positive semidef-
inite, but it hasx2 instead ofx on the diagonal (x2 is the vector whoseith coordinate isx2

i ). Let B be
the diagonal matrix withx−x2 on the diagonal. Becausex∈ [0,1]n, B is positive semidefinite. Finally,
let Y = A+ B; it is clearly symmetric and positive semidefinite. Notice that for everyi, Yei (projected
onto [x0 = 1]) is x(i,1) and thatYe0−Yei is x(i,0). These are both guaranteed to be inP by the lemma’s
hypothesis, sox is in P′.

3.2 A game

Lemmas3.1, 3.2and3.3all conclude the same thing from different hypotheses. We now state a protec-
tion lemma that holds for all of the proof systems because it uses a hypothesis that is stronger than any
of those in the previous protection lemmas:

Lemma 3.4 (Game Lemma).The following holds for GC, LS0, LS and LS+: Let P⊂ [0,1]n be a
polytope, and x∈ {0, 1

2,1}n∩P. If, for every i∈ E(x), x(i,0),x(i,1) ∈ P, then x∈ P′.

This lemma gives us the following Prover-Adversary game for showing a lower-bound on the rank
of a pointw ∈ {0, 1

2,1}n with respect toP. We think of the Prover as trying to show thatw has high
rank, while the Adversary is trying to foil that proof. The game proceeds in rounds. During each round,
there is a current pointx∈ {0, 1

2,1}n, whose initial value isw. At each round, the Prover either moves
or allows the Adversary to move:

Prover-move The Prover generates a set of pointsY⊂ {0, 1
2,1}n such thatx is a convex combination of

those points (x /∈Y). The Adversary selects one pointy∈Y to be the newx.
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Adversary-move The Adversary selects a coordinatee such thatxe is 1
2 and a valuea ∈ {0,1}. The

newx is x(e,a).

The game ends whenx is no longer inPorx∈Zn. The Prover gets one reward-point (as distinguished
from geometric points) for each Adversary-move.

Lemma 3.5. If a Prover has a strategy to earn m reward-points against every adversary, then the (GC,
LS0, LS, or LS+)-rank of w with respect to P is at least m.

Proof. Let r = r(w,P) be the maximum, over all adversaries, of the number of rounds in the Prover-
Adversary game for the given prover, the pointw and the polytopeP. We proceed by induction onr. If
r = 0, thenm= 0, but the rank ofw can never be less than 0. For arbitraryr > 0, the Prover can start
by making a Prover-move or an Adversary-move. If it is a Prover-move, then the Prover presentsY and,
no matter whichy∈Y the Adversary chooses,r(y,P) < r(w,P) and the Prover has a strategy to earnm
reward-points. Hence, by induction, eachy∈Y has rank at leastm. By convexity, the rank ofw, which
is a convex combination of points inY, is at leastm. If it is an Adversary-move, then, no matter whiche
anda the Adversary chooses,r(w(e,a),P) < r(w,P) and the Prover has a strategy to earnm−1 reward-
points. Again, by induction,w(e,a) has rank at leastm−1 for all possible(e,a), so byLemma 3.4, w has
rank at leastm.

4 Expanding Constraints

In what follows, we deal withF , a set of mod-2 equations overn variables. That is, each equation inF
is of the form∑i∈Sxi ≡ a (mod 2), whereS⊂ [n] anda∈ {0,1}. Notice that each such equation can be
represented by the conjunction of 2|S|−1 clauses, each of which can be represented as a linear inequality.
We denote byPF the polytope bounded by these inequalities and by the inequalities 0≤ xi ≤ 1.

Let GF be the bipartite graph from the setF to the set of variables where each equation is connected
to the variables it contains. We prove a rank lower bound forPF as a function of the expansion ofGF .

We will need the following notions of expansion:

Definition 4.1. Let e(V1,V2) be the number of edges(v1,v2) with vi ∈Vi . The edge-expansion of a graph
G = (V,E) is

min
S⊂V, |S|≤|V|/2

e(S,V \S)
|S|

.

Definition 4.2. A bipartite graph fromV to U is an (r,ε)-expander if, for all subsetsX ⊂ V where
|X| ≤ r, we haveΓ(X)≥ ε|X|. Theexpansionof a setX ⊂V, e(X), is the value|Γ(X)|/|X|.

Definition 4.3. Let G be a bipartite graph fromV to U . The boundary of a setX ⊂ V is ∂X
d={u ∈

U : |Γ(u)∩X|= 1}. G is an(r,ε)-boundary expander if for all subsetsX ⊂V where|X| ≤ r, we have
|∂X| ≥ ε|X|. Theboundary expansionof a setX ⊂V is the value|∂X|/|X|.

The following fact relates bipartite expansion with boundary-expansion.
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Fact 4.4. If G is a bipartite graph fromV to U whereV has maximal degreed and if G is an(r,ε)-
expander, thenG is a(r,2ε −d)-boundary expander.

The reason that we requireGF to be a good expander is that it allows us to satisfy subsets ofF :

Lemma 4.5. Consider a set F of m mod-2 equations over n variables. Assume that for every variable
v and every value a∈ {0,1}, there is a solution to F where v assumes the value a. Then all the 0-1
solutions to F average to the all-1

2 assignment.

Proof. Let Sv,a be a solution toF in which variablev is set toa. It is easy to see that the mapping
S 7→ S+Sv,1−Sv,0 mod 2 is a one-to-one mapping from solutions withv = 0 onto solutions withv = 1.
Therefore the average over all solutions toF is 1

2 onv.

Lemma 4.6. Let F be a set of m mod-2 equations over n variables. Assume GF is an(m,δ )-boundary
expander for someδ > 0. Then F has a 0-1 solution.

Proof. We begin by pairing each equation inF to a variable it includes. Fori with 0≤ i < massume we
have a pairing( f1,v1), . . . ,( fi ,vi) such thatv1, . . . ,vi are not in the boundary ofF \ { f1, . . . , fi}. Since
i < m, F \{ f1, . . . , fi} is not empty, so there must be somevi+1 /∈ {v1, . . . ,vi} in ∂ (F \{ f1, . . . , fi}). It is
connected to some equationfi+1 in F \{ f1, . . . , fi} and to no other equations in that set. Add( fi+1,vi+1)
to the set of pairs. Eventually we have the set of pairs( f1,v1), . . . ,( fm,vm). To satisfyF , set all variables
not in{v1, . . . ,vm} arbitrarily. Now, fori = m to 1, setvi so that it satisfies equationfi (notice that in this
order,vi is the last unassigned variable offi).

We now use the game to show a rank lower bound for expanding sets of equations. Forx∈ {0, 1
2,1}n,

say an equationf ∈ F is fixedwith respect tox if x sets all the variables off to 0/1 andf is satisfied
by x. Let GF(x) be the subgraph ofGF induced by the set of variablesE(x) and the set of non-fixed
equations.

Theorem 4.7. Letε > 0 and let w∈ {0, 1
2,1}n. If GF(w) is an(r,2+ε)-boundary expander, then w has

(GC, LS0, LS, LS+)-rank at least rε with respect to PF .

Proof. We start the game withx = w. Clearlyx ∈ PF since each equationf ∈ F is either fixed or has
two underlying variables set to12 by the expansion requirement. In the latter case, each linear inequality
representingf is satisfied byProposition 2.1. Let Γx(R) be the neighbor set ofR⊂ F in GF(x). Let `
initially be set tor. The Prover’s strategy is as follows:

1. Let the Adversary move as long as all subsetsR⊂ F in GF(x) of size at most̀ have boundary
expansion> 2 in GF(x). Note that after such a move we havex∈ PF since all equations inGF(x)
have degree at least 2.

2. Let B be a maximal subset of equations inGF(x) with boundary expansion≤ 2 such that|B| ≤ `.
Only one variable has been set (by an Adversary move) sinceB had boundary expansion> 2,
so nowB must have boundary expansion> 1. Now the Prover moves. LetY be the set of all
assignments satisfyingB that are 0−1 on Γx(B) and that agree withx elsewhere. To see thatY
is nonempty and that it does indeed average tox, consider an arbitrary variablev in Γx(B) and an
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arbitrary valuea∈ {0,1}. By Lemma 4.5it is enough to show that there is a point inY in which
v is set toa. Notice thatB still has boundary-expansion greater than 0 on the graphGF(x) minus
v, and soLemma 4.6implies that, regardless of the setting ofv, there exists a 0−1 assignment on
Γx(B)\{v} satisfyingB. The Adversary selects oney∈Y to be the newx.

Set` to `− |B|. If ` = 0, stop the game. Otherwise, we argue thatx ∈ PF . Indeed, in that case
|B| is strictly smaller thaǹ , and it is always the case that every equationf not in B has at least
two neighbors inGF(x) since otherwiseB

⋃
{ f} would also have boundary-expansion at most 2

contradicting the maximality ofB.

3. Repeat until the game is over.

Now we will show that the Prover always earns at leastrε reward-points. Assume the game ends
afterk rounds of the strategy. For any roundi ≤ k, let Bi be the set of vertices designated in step 2 and
let S=

⋃k
j=1B j . The size ofS is r, soS had a boundary of size at least(2+ ε)r in GF . At the end of

the game,Shas no boundary (in fact it has no neighbors) inGF(x). At most 2r of these boundary nodes
were removed by the Prover: at the beginning of step 2 of roundi, Bi has at most 2|Bi | boundary nodes
and every boundary node ofS is a boundary node for exactly oneBi . Hence at leastεr of S’s original
boundary nodes were removed by the Adversary. ByLemma 3.5, w has the required rank.

It turns out that many common formulas are examples of boundary-expanding mod-2 equations.

Definition 4.8 ([39]). The Tseitin tautology for an odd-size graphG = (V,E), denotedTS(G), is the
following: given a boolean variableXuv for each edge(u,v) ∈ E, there exists no assignment to all the
variables satisfying

∑
v∈Γ(u)

Xuv≡ 1 (mod 2) ,

for everyu∈V.

Definition 4.9. There are 2
(n

k

)
linear, mod-2 equations overn variables that contain exactlyk different

variables. LetMk,n
m be the probability distribution induced by choosingm of these equations uniformly

and independently. There are 2k
(n

k

)
clauses overn variables that contain exactlyk different variables. Let

N
k,n
m be the probability distribution induced by choosingmof these clauses uniformly and independently.

Theorem 4.7enables us to prove our main result:

Corllary 4.10. The following holds for GC, LS0, LS and LS+:

(1) The Tseitin tautology on a graph H has rank at least(c−2)n/2, where c is the edge-expansion of
H;

(2) Let k≥ 5. There exists a constant c such that, for all∆ > c, F ∼ M
k,n
∆n requires rankΩ(n) with

high probability;

(3) Let k≥ 5. There exists a constant c such that, for all∆ > c, C∼N
k,n
∆n requires rankΩ(n) with high

probability.
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Proof. Throughout, letw be the all12 point.

(1) The edge-expansion of a graphH = (V,E) is the density of the sparsest cut:

min
S⊂V, |S|≤|V|/2

e(S,V \S)
|S|

.

It is easy to see thatGTS(H)(w) is an(n/2,c)-boundary-expander: consider any subset of nodes in
H, S⊂V and look at the corresponding setRof equations inTS(H). Every variable corresponding
to an edge across the cut(S,V \S) is in the boundary ofR in the bipartite graphGTS(H). Now
simply applyTheorem 4.7.

(2) It is well-known thatGF(w) is an excellent expander ([12]): for any constant∆, ε,k, there exists
a constantα > 0 such thatGF(w) is almost always an(αn,k− 1− ε)-expander. ByFact 4.4,
every(r,δ ) bipartite expander graph on(V,U) whereV has maximal degreed is an(r,2δ −d)-
boundary-expander. HenceGF(w) is an(αn,k−2−2ε)-boundary-expander. Fork≥ 5 and small
ε, the boundary-expansion is more than 2, sow has rankΩ(n) by Theorem 4.7. Lastly, we need to
fix c such that, whenever∆ > c, F is unsatisfiable with high probability (otherwise,F might not
have high rank, despite the fact thatw does). The corollary follows.

(3) GC(w), the bipartite graph associated with the clauses ofC, is the same asGF(w) for random
F . GenerateC′ by adding, for eache∈C, the following clauses: ife has an even (odd) number
of positive literals, all clauses on the same variables ase that have an even (odd) number of
positive literals. Clearlyw’s rank with respect toPC is at least its rank with respect toPC′ , but
C′ is equivalent to a set of|C| mod-2 equations such thatGC′(w) is an(αn,k−2−2ε)-boundary
expander (with high probability, given∆,ε,k,α as in (2)). Again, fixc so that, whenever∆ > c, C
is unsatisfiable with high probability.

5 Integrality Gaps from Rank Lower Bounds

The problem MAX-k-SAT (MAX-k-LIN) is the following: given a set ofk-clauses (mod-2 equations),
determine the maximum number of clauses (equations) that can be satisfied simultaneously. This prob-
lem is well-studied in the theory of approximation algorithms and optimal inapproximation results are
known under the assumption thatP 6= NP [28]. Here we show optimal inapproximation results (that
are unconditional) for a restricted class of approximation algorithms that involve applying GC or LS
procedures to a relaxation of the standard integer program. These algorithms are not necessarily poly-
time. Similar results have been shown for LS-relaxations of vertex cover ([2], see also the improve-
ments [3, 37]) and maximum independent set ([19]). Both show that a large integrality gap remains after
Ω(logn) rounds ofLS.

Given a set ofk-mod-2 equationsF = { f1, . . . , fm} over variablesx1, . . . ,xn, add a new set of vari-
ablesy1, . . . ,ym. For eachfi : ∑ j∈Ii x j ≡ ai (mod 2), let f ′i be the equationyi +∑ j∈Ii x j ≡ ai +1 (mod 2).
Let F ′ be the set off ′i ’s. If yi is 1, thenf ′i is satisfied if and only iffi is satisfied. Hence we want to max-
imize the linear function∑m

i=1yi over the constraintsF ′ within the boolean cube. Convert these mod-2

THEORY OFCOMPUTING, Volume 2 (2006), pp. 65–90 79



J. BURESH-OPPENHEIM, N. GALESI, S. HOORY, A. MAGEN, T. PITASSI

equations into linear constraints, and call the resulting linear programLF . The integrality gap of this LP
is at most 2 since, given any set of mod-2 equations, there must be a boolean assignment satisfying at
least half of them. Anr-round GC- (respectively, LS0-, LS-, LS+-) relaxation of (the integer version of)
LF (or any linear program) is a linear program with the same optimization function but with all addi-
tional constraints that can be generated in depthr from the original constraints using GC (respectively,
LS0, LS, LS+).

Theorem 5.1. Let k≥ 5. For every constantε > 0, there are constants∆,β > 0 such that if F∼ M
k,n
∆n

then the integrality gap of everyβn-round GC- (resp., LS0-, LS-, LS+-) relaxation of LF is at least2− ε

with high probability.

Proof. Givenε, fix ∆ � 8ln2/ε ′2, where(1
2 + ε ′)(2− ε) = 1. An arbitrary assignment satisfies each of

F ’s equations with probability12, so the expected number of satisfied equations is1
2∆n. The probability

that it satisfies more than(1
2 + ε ′)∆n equations is at mostexp(− ε ′2∆n

8 ) by Chernoff. Given the choice of
∆, this expression is much less than 2−n, so with high probability no assignment satisfies more than a
1
2 + ε ′-fraction ofF ’s equations.

On the other hand, consider an assignmentw that sets the variablesy1, . . . ,y∆n to 1 and setsx1, . . . ,xn

to 1
2. Clearly, w satisfies all of the equations ofF ′. Furthermore, it is well-known thatGF ′(w) is

almost surely an(αn,2+ δ )-boundary expander for someα,δ > 0 that depend on∆. Let β = αδ .
Hence, byTheorem 4.7, w remains a feasible solution for everyβn-round GC- (resp., LS0-, LS-, LS+-)
relaxation ofLF .

We can form a linear programLC for a set ofk-clausesC in an analogous manner. Similarly,

Theorem 5.2. Let k≥ 5. For everyε > 0, there exists∆,β > 0 such that if C∼N
k,n
∆n , then the integrality

gap of everyβn-round relaxation of LC is at least 2k

2k−1 − ε with high probability.

Again, this inapproximation result is optimal since, given any set ofk-clauses, there is a boolean
assignment that satisfies at least a2k−1

2k fraction of them.

6 Separating GC, LS and Resolution Ranks

We consider the following generalization of PHPn, the Pigeonhole Principle onn+ 1 pigeons andn
holes, first suggested in [6]. Let G = (U,V,E) be a bipartite graph, where|U |= n+1 and|V|= n. The
tautology PHP(G) is the statement thatG doesn’t have a perfect matching. The formal statement of this
is (1) For eachi ∈U , ∑ j∈Γ(i) xi, j ≥ 1; (2) For all j ∈V, i, i′ ∈ Γ( j), such thati 6= i′, xi, j +xi′, j ≤ 1. The
standard PHPn is just PHP(Kn+1,n), whereKn+1,n is the completen+1,n bipartite graph.

In this section we show the following separations: (1)PHPn has LS-rankn but GC-rankO(logn);
(2) For an expander graphG with constant degreed, the Resolution-rank ofPHP(G) is Ω(n), while its
LS-rank and GC-rank areO(d).

The Resolution-rank lower bound is proven in [6]; it is implied by their size lower bound. The
LS- and GC-rank upper bounds are very similar to each other: for everyj ∈V, it is possible to derive
∑i∈Γ( j) xi, j ≤ 1 in rankO(d) in both systems (Corollary 3.1.1 of [27] and Corollary 2.8 of [33]). The
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point is that the polytope defined by adding these new inequalities is the empty polytope, and therefore
we can get the desired contradiction in one LS or GC step.

For the separation result of the GC and LS ranks, we start with the upper bound on the GC-rank of
PHPn. This result was proved independently by [5]. Actually, the theorem follows almost immediately
from Theorem 3.1.1 of [27], which preceeds both works. We include its proof for illustrative purposes.

Theorem 6.1. The GC-rank of PHPn is O(logn).

Proof. For a subsetS⊂ {1,2, . . . ,n+1} and 1≤ j ≤ n let fS, j be the inequality∑i∈Sxi j ≤ 1. We claim
that it is possible to deduce, fromfS, j for everySof sizek, any fT, j with T of size< 2k in one GC-cut.
In other words, iffS, j are valid forPHP(r) (recall the notation ofDefinition 2.6) for everySof sizek and
every j, then fT, j is valid forPHP(r+1) for everyT of size< 2k. This means that for allj, ∑n+1

i=1 xi j ≤ 1 is
valid for PHP(O(logn)). On the other hand, no solution that satisfies these inequalities can satisfy all the
axioms∑n

j=1xi j ≥ 1 for everyi. ThereforePHP(O(logn)) = /0, and the Chv́atal -rank ofPHPn is O(logn).
To see the claim, take anyj andT of sizel < 2k, and sum up with coefficients 1/

(l−1
k−1

)
the inequalities

fS, j over all subsetsS⊂ T of sizek. After rounding the deduced inequality is

∑
i∈T

xi, j ≤

⌊ (l
k

)(l−1
k−1

)⌋
= bl/kc ≤ 1 , (6.1)

namely,fT, j . A good way to think of (6.1) is that when using the symmetric sum, we care only about the
average threshold for a single variable. InfS, j it is 1/|S|, and so basically all we do is take the threshold
xi ≤ 1/|S| and turn it into∑i∈T xi ≤ |T|/|S|, and if |T|< 2|S| we get∑i∈T ≤ b|T|/|S|c ≤ 1.

In fact, this bound is tight by [5]. Again, Theorem 3.1.1 of [27] proves something very similar.
[24] prove that the PHP has constant-rank proofs in LS+. This fact also follows immediately from

Corollary 2.15 of [33]. In light of this, LS+ is separated from GC with respect to rank.
A linear lower bound for the LS-rank ofPHPn was given by [23]. See Corollary 2.8 of [33] for a

very similar proof. We will give a proof for the LS0-rank using a protection lemma, which we think is
simple and illuminating.

Theorem 6.2. ([23]) The LS0-rank of PHPn is n−1.

Proof. The proof proceeds by induction onn. PHP2 consists of a single point, and its LS0-rank is
therefore 1. ForPHPn, we argue that the all 1/n point has rankn−1. Given 1≤ i ≤ n+1 and 1≤ `≤ n,
let xi,` be the following point:xi,`

i,` = 1; xi,`
i,`′ = 0 for all `′ 6= `; xi,`

i′,` = 0 for all i′ 6= i; xi,` is 1/(n− 1)
everywhere else. For every coordinate(i, j), let Si j be the set ofxi,` for 1≤ ` ≤ n. Note that for every
point in Si j , the coordinate(i, j) has value in{0,1}. Furthermore, the average of all points inSi j is
the all 1/n point. By Lemma 3.2, the all 1/n point has rank one more than the minimum rank of the
points inSi j . But each such point is the all 1/(n−1) point for PHPn−1, so it must have rankn−2 by
induction.

The PHP has polynomial-size (tree-like) LS0 proofs. The fact that LS requires rankΩ(n) for the
PHP shows that for both LS and LS0 proofs, large rank is not a good indicator of large size (even in the
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tree-like systems). Since GC and LS+ prove the PHP in small rank, and since Resolution requires large
proofs, the PHP does not resolve this question for these proof systems. In the next section, we give a
different formula which shows that GC and Resolution can have large rank and small size. In fact, it
is not difficult to see that tree-like Resolution can have large rank and small size. The open questions,
then, are whether large rank implies large size in tree-like GC or in LS+ (tree-like or not).

7 GC Proofs with Large Rank and Small Size

In Theorem 6.1 of [11] and Theorem 4 of [5], it is shown that the sizes of a GC proof of a tautology
is O(nr) wheren is the number of variables andr is the GC-rank of the polytope associated with the
tautology. Here we show an example where this bound is very far from being tight. Specifically, we show
an example of a tautology which has a quadratic-size GC proof (in fact even a Resolution proof with
that size) and linear GC-rank. It turns out that such a separation between size and rank can be witnessed
by any formula that has polysize GC refutations, but requires exponential tree-like GC refutations ([5]).

The unsatisfiable formula we take is GTn which is the negation of the property that every total order-
ing onn elements has a maximal element (alternatively, that a directed graph closed under transitivity
and with no cycles of size two has a source node). More formally, given the set of boolean variables
{Xi j : i, j ∈ [n], i 6= j}, assert

(1) Xi j ≡ ¬Xji for eachi 6= j (totality);

(2) Xi j ∧Xjk → Xik for eachi 6= j 6= k (transitivity);

(3)
∨

j 6=i Xi j for eachi (no maximal element).

The formula was introduced by [32] and is formulated usingn(n−1) variables. The natural way to state
it uses width-n clauses, but it can be encoded with constant-width. Stalmark [35] shows thatGTn has
polynomial-size Resolution refutations, but Bonet and Galesi [8] show that it requires widthΩ(n) (even
when stated with narrow clauses). Since Resolution-width is at most Resolution-rank (the length of the
path from a width-w clause to the empty clause in a Resolution refutation is at leastw), the Resolution-
rank is alsoΩ(n). Since GC polynomially simulates resolution ([14]), there is a also a polynomial size
GC proof of the formula. It remains to show:

Theorem 7.1. The GC-rank and the LS0-rank of the polytope associated with GTn is Ω(n).

We associate a partial ordering≺ on [n] with a vectorx≺ ∈ {0, 1
2,1}n(n−1) by the assignmentxi j =

0,1, 1
2 wheni is smaller than, bigger than, or incomparable toj, respectively.

Definition 7.2. A (partial) order≺ is calleds-scaledif there is a partition of[n] into setsA1,A2, . . . ,As,
such that≺ is a total ordering within each of theAi ’s and is not defined between elements in different
Ai ’s.

Claim 7.3. If ≺ is s-scaled with s> 2, then x≺ remains after s−3 rounds of GC or LS0 cuts.

The claim immediately provides a lower bound ofn−2 for the rank ofP = GTn since the vector
associated with the empty order (which isn-scaled) has that rank.
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Proof ofClaim 7.3. By induction ons. Suppose≺ is 3-scaled. We need to show thatx≺ ∈ P = P(0).
Transitivity inequalities clearly hold for three elements in the sameAi . A transitivity inequality that
involves more than oneAi must contain at least two variables with value1

2 and therefore must be satisfied
by Proposition 2.1. The “no maximal element” inequalities also hold, because for every element there
are at least two others to which it is not comparable, and the two associated1

2 values alone satisfy the
inequality. For a generals we let x = x≺. Notice thatE(x) is a set of all edges connecting different
components of the graph when we associate≺ with a graph which is a union ofs complete graphs. We
partition the edges inE(x) to

(s
2

)
sets by the components they connect and argue thatx and this partition

satisfy the conditions ofLemma 3.1. Indeed, for a choice of componentsA andB we denote by≺A

the order which is the same as≺ except all the elemens ofA are bigger than those ofB. Similarly we
define≺B. It is easy to see thatx = (x≺A +x≺B)/2. Since≺A,≺B are(s−1)-scaled we inductively have
that rank(x≺A), rank(x≺B) ≥ s−3, and byLemma 3.1rank(x) ≥ s−2. Notice that sinceLemma 3.1is
strictly weaker thanLemma 3.2, the proof is valid for LS0 in addition to GC.

8 Automatizability of the LS-systems for Small-Rank CNF Formulas

In this section, we show that ifP∈ [0,1]n is a polytope that can be described by a polynomial number of
halfspaces each with polynomial-length coefficients, then there is a procedure to testP(r) (ther-th round
of LS or LS0) for emptyness in timenO(r). This is important since it means that ifP is a polytope that
comes from an unsatisfiable CNF or set of mod-2 equations andP has small rank, then its unsatisfiability
can be efficiently witnessed. The general idea of this theorem is evident in [33], but it is not explicitly
stated in this form. Also, we rely heavily on the techniques explained in [25].

It is important to note that the ability to optimize over a polytope does not imply the ability to
test it for emptyness. Indeed, optimization procedures generally assume non-emptyness. In particular,
when [33] shows that it is possible to efficiently optimize overP(r) in LS+ for small r, this does not
seem to imply anything about testing for emptyness. See the end of this section for further explanation
of this point.

A strong separation oraclefor a convex bodyP⊆ Rn is a procedure, that givenx∈ Rn, either states
thatx∈ P or supplies a hyperplane separatingx from P.

We say that a convex bodyP⊆ Rn hasfacet-complexityϕ if it can be represented as a set of linear
inequalities (with rational coefficients) such that each of the inequalities can be encoded in lengthϕ.

Theorem 8.1. Assume we are given a strong separation oracle for a polytope P⊆ [0,1]n of facet-
complexityϕ. Then, there is an algorithm for the LS and LS0 proof systems that checks if P(r) is empty
with running time poly(n,ϕ)r .

Note that for a polytope arising from CNF formulas,ϕ = O(n), and consequently the running time
is nO(r). The claim follows for LS from the following lemmas. For LS0, the argument is very similar.

Lemma 8.2. Let P⊆ [0,1]n be a polytope with facet-complexityϕ. Given a strong separation oracleA
for P, there is a strong separation oracle for P(1) that makes poly(n,ϕ) calls toA.

Lemma 8.3. If a polytope P⊆ [0,1]n has facet-complexityϕ, then P(1) has facet-complexity bounded
by O(n6 ·ϕ).
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Lemma 8.2implies a strong separation oracle forP(r) with running time poly(n,ϕ)r . By Lemma 8.3
the facet-complexity ofP(r) is bounded byϕ ·nO(r). Theorem 6.4.9 from [25] states that we can check
whether a polytope is empty by querying a strong separation oracle for that polytope. The number of
queries required is polynomial in the facet-complexity and the dimension.

Proof ofLemma 8.2. As usual, we move to the coneP in Rn+1 (seeSection2.1). It is easy to see that a
strong separation oracle forP implies one forP, and that the facet-complexity ofP andP are the same.
We define a coneM(P) in R(n+1)2

as the collection of(n+1)× (n+1) matricesY satisfying

(i) Y is symmetric,

(ii) Y0 = diag(Y),

(iii) Yi ∈ P,

(iv) Y0−Yi ∈ P,

where we denote byY0, . . .Yn the columns ofY, and by diag(Y) its diagonal. FromDefinition 2.9, we
have

P(1) =
{

x∈ Rn : Y ∈M(P) andY0 =
(

1
x

)}
.

Let x∈ Rn. Consider the following polytopeQx,P in R(n+1)2
.

Qx,P =
{

Y ∈M(P)|Y0 =
(

1
x

)}
.

By definitionx∈ P(1) if and only if Qx,P is not empty. We first argue thatQx,P has a separation oracle.

To see that, observe that conditions (i) and (ii) above, as well as the condition thatY0 =
(1

x

)
, are all

simple halfspaces and hyperplanes. Conditions (iii) and (iv) can be checked using the separation oracle
for P. Since the facet-complexity ofQx,P is bounded byϕ, we can apply [25] Theorem 6.4.9 to obtain

an algorithm that checks whetherQx,P is empty, and consequently whetherx∈ P(1). Assume now that

x /∈ P(1). Along the above run of the algorithm (ending with the conclusionQx,P = /0), the separation
oracle forP has been invoked a polynomial number of times, resulting in a polynomial number of
halfspaces containingP. Let R be the intersection of those halfspaces. The crucial point to note here is
thatQx,R = /0. This is sinceQx,R andQx,P are indistinguishable to this run of the algorithm.

Let (a j , ·)≥ b j be the halfspaces definingR. By the duality theorem, there is a positive combination
~α of the inequalities(a j ,Yi)≥ b j and(a j ,Y0−Yi)≥ b j plus a combination of the inequalities ofM(P),
such that (i) the coefficient vector of theY variables is 0 and (ii) the constant term is of the form∑αixi ≥
b > 0. On the other hand, ifx∈ P(1) thenQx,R is not empty and so the same combination cannot lead
to a contradiction and so∑αixi ≤ 0. This provides the desired separation. The only thing left to is to
find the combination (the vector of coefficientsα) that leads to the above contradiction. Here we use the
fact thatR has a polynomial number of faces, and so to find the combination satisfying both (i) and (ii)
above is nothing but solving a polynomial linear program.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 65–90 84



RANK BOUNDS AND INTEGRALITY GAPS FORCUTTING PLANES PROCEDURES

We say that a cone hasvertex-complexityν if it is the span of a collection of rational vectors, each
of which can be encoded in lengthν .

Proof ofLemma 8.3. The facet-complexity ofM(P) is at mostϕ. Lemma 6.2.4 of [25] states that, for
any polytope inRd of facet-complexityϕ and vertex-complexityν , we haveν ≤ 4d2ϕ andϕ ≤ 3d2ν .
Therefore, the vertex-complexity ofM(P) is at mostO(n4ϕ). This bound also applies to the vertex-

complexity ofP
(1)

since it is just a projection ofM(P). By the same lemma, the facet-complexity ofP
(1)

is O(n2 ·n4ϕ), and our claim follows.

It is not clear how to testP(r) for emptyness efficiently in LS+ becauseLemma 8.2does not seem
to hold. In particular,M(P) is now required to be positive semidefinite, soQx,P is defined by infinitely
many linear inequalities.

9 Open Questions

Two of the major challenges in this area are to prove size lower bounds for GC or LS refutations of,
say, randomk-CNFs or the Tseitin Tautologies, and to prove rank lower bounds on LS as a means of
approximating optimization problems such as Vertex Cover—that is, improving the bound of [2] (see
[3, 37] for some improvements on this result). More immediate open questions are the following: Do our
techniques for MAXSAT rank lower bounds apply to any other optimization problems? For example,
[1] used similar techniques to prove rank bounds for hypergraph Vertex Cover and Set Cover. Does large
GC-rank of a CNF imply large tree-like GC-size? Does large LS+-rank imply large LS+-size? If a CNF
has a rank-r LS+-refutation, can we find such a refutation in timenO(r)? This would lead to a natural
automated theorem prover that proves the PHP efficiently.
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[25] * MARTIN GRÖTSCHEL, LÁSZLÓ LOVÁSZ, AND ALEXANDER SCHRIJVER: Geometric algo-
rithms and combinatorial optimization, volume 2 ofAlgorithms and Combinatorics. Springer-
Verlag, Berlin, second edition, 1993.8, 8

[26] * A. HAKEN: The intractability of resolution.Theoretical Computer Science, 39:297–305, 1985.
[TCS:10.1016/0304-3975(85)90144-6]. 2.2

[27] * MARK HARTMANN : Cutting Planes and the Complexity of the Integer Hull. PhD thesis, Cornell
University, 1988. Department of Operations Research and Industrial Engineering.6, 6
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