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Abstract: Proving integrality gaps for linear relaxations of NP optimization problems is a
difficult task and usually undertaken on a case-by-case basis. We initiate a more systematic
approach. We prove an integrality gap of 2−o(1) for three families of linear relaxations
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1 Introduction

Approximation algorithms for NP-hard problems—metricTSP, VERTEX COVER, graph expansion, cut
problems, etc.—often use a linear relaxation of the problem (see Vazirani [31], Hochbaum [22]). For
instance, a simple 2-approximation algorithm forVERTEX COVERsolves the following relaxation: min-
imize ∑i∈V xi such thatxi + x j ≥ 1 for all {i, j} ∈ E. One can show that in the optimum solution,
xi ∈ {0,1/2,1}. Thus rounding the 1/2’s up to 1 gives aVERTEX COVER [21]. This also proves an
upper bound of 2 on theintegrality gapof the relaxation, which is the maximum over all graphsG of the
ratio of the size of the minimumVERTEX COVER in G and the cost of the optimum fractional solution.
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Can we write a linear relaxation with a lower integrality gap, say 1.5? Note that the LP need not even be
of polynomial size so long as it comes with a polynomial time separation oracle, which is all we need to
solve it with the Ellipsoid method.

Such quests for tighter relaxations can seem never-ending, since even simple modifications could
conceivably tighten the relaxation. For certain problems, though, the quest for tighter relaxations—
indeed, the quest for any better approximation algorithms—has ended. Results using probabilistically
checkable proofs (PCPs) show that for a variety of problems such asMAX -3SAT, SET COVER, MAX -
2SAT, etc., known approximation guarantees cannot be improved if P6= NP. Thus PCP-based techniques
provide an explanation for our inability to provide tighter relaxations for these problems.

However, for many other problems, including all four problems mentioned in the opening paragraph,
the PCP-based results are fairly weak or nonexistent and fall well below the integrality gaps of the best
relaxations. The best hardness result forVERTEX COVER—due to Dinur and Safra [11], who improved
upon a long line of work—only shows that 1.36-approximation is NP-hard. The best hardness result for
metricTSPonly shows that 1.01-approximation is NP-hard [25], yet decades of work has failed to yield a
relaxation with integrality gap better than 1.5 [32] (or 4/3, if one believes a well-known conjecture [17]).
For graph expansion and related graph problems essentially no hardness results exist yet we only know
relaxations with integrality gapΩ(logn) (Shmoys [29]).

When decades of work has failed to turn up tighter relaxations, one should seriously investigate the
possibility thatno tighter relaxations exist. However, proving such a statement may be related to P
vs. NP, since linear programming is complete for P.1 Thus it seems necessary to work with subfamilies
of linear relaxations. An integrality gap result for a large subfamily of relaxations may then be viewed
as a lower bound for a restricted computational model, analogous say to lower bounds for monotone
circuits [27] and for proof systems [5]. An example is Yannakakis’s result [33] that representingTSP

(the exact version) using a symmetric linear program requires exponentially many constraints—this
ruled out some approaches to P= NP that were being tried at the time.

In this paper we prove nonexistence of tighter relaxations forVERTEX COVER among three fairly
general families of LPs. For all families we prove an integrality gap of 2−o(1). An interesting aspect
of our result—also the reason for the paper’s title—is that no explicit description is known for the LPs
in the three families. However, we can show that they use inequalities that have a fairly local view of
the graph. This lets us construct graphs in which any minimum vertex cover must contain almost all
the vertices (in particular, it must contain(1−α)n vertices whereα > 0 is very small), yet the all-1/2
solution (or something close to it) is feasible for each inequality. Since the complement of a vertex
cover is an independent set, and vice versa, our results may also be trivially rephrased to say that the
integrality gap of theINDEPENDENT SETproblem for our three families of LPs is unbounded, even
though the graphs witnessing these gaps have independent sets of sizeΩ(n).

In the first two families of relaxations we allow only the variablesx1,x2, . . . ,xn∈ [0,1] for the vertices
and no auxiliary variables. Some such restriction seems necessary because auxiliary variables would
give the LP the power of arbitrary polynomial-time computations. The third family allows auxiliary
variables implicitly, but in a very controlled way—namely, as part of the “lift-and-project” procedure of

1Erratum: The conference version of this paper erroneously stated that proving such a statement is tantamount to proving
P 6= NP. However, it is actually an open problem [33] whether P= NP implies that theVERTEX COVER polytope has a
polynomial size description (where additional variables are allowed).
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Lovász and Schrijver [24].
The first family consists of linear programs that can includearbitrary inequalities on any set ofεn

variables, for some small constantε > 0.
The second family consists of linear programs containing inequalities with lowdefect. Usually one

defines “defect” for facets of theINDEPENDENT SETpolytope (see for instance [24, 23]); here we will
make an analogous definition for theVERTEX COVERpolytope (i.e., the convex hull of all integra vertex
covers): The defect of aVERTEX COVER polytope facetaTx≥ b, wherea is a vector of integers andb
an integer, is defined to be 2b−∑i ai . The defects of such facets are always non-negative [24]. Linear
programs in the second family are allowed those inequalities defining facets of theVERTEX COVER

polytope with defect at mostεn. An integrality gap of 2−o(1) for this family is a simple corollary of
the one for the first family.

The third family consists of linear programs obtained fromO(logn) rounds of a “lift-and-project”
construction of Lov́asz and Schrijver [24]. This is a method that underlies semidefinite relaxations used
in many recent approximation algorithms starting with Goemans and Williamson [19]. The LS proce-
dure over many rounds generates tighter and tighter linear relaxations for 0/1 optimization problems.
It is more round-efficient than classical cutting planes procedures such as Gomory-Chvátal [8] since it
generates every valid inequality in at mostn rounds. Even in one round it generates nontrivial inequali-
ties forVERTEX COVER. Furthermore, the set of inequalities derivable inO(1) rounds—this could be an
exponentially large set—has a polynomial-time separation oracle, thus allowing the Ellipsoid method to
optimize over this set. In general, one can optimize over the set of inequalities obtained afterr rounds in
nO(r) time. We show that at leastΩ(logn) rounds of theLSprocedure (the LP version, not the semidef-
inite version) are necessary to reduce the integrality gap below 2−o(1).2 Note that characterizing the
set of inequalities obtained in evenO(1) rounds has proved difficult; even the case of 2 rounds is open.

For the first family, better integrality gaps can be obtained forINDEPENDENT SETthan those triv-
ially implied by our results forVERTEX COVER. We show that for linear programs where each inequality
uses at mostnε(1−γ) variables (hereε,γ > 0 are any small constants), the integrality gap forINDEPEN-
DENT SET is n1−ε . This is essentially tight since constraints usingnε variables can clearly approximate
INDEPENDENT SETwithin a factor ofn1−ε .

Our techniques seem applicable to problems other thanVERTEX COVER (and INDEPENDENT SET)
and have been the subject of future work [6, 1, 30]. These developments are discussed in the related
work section below. However, several open problems remain. For example, extending our ideas to
semidefinite relaxations as well as to the semidefinite programming analogue of the Lovász-Schrijver
procedure remains a difficult and interesting open problem. We discuss this and other open problems
further inSection5.

We also note that the integrality gaps proven inSection2 are strong enough (namely, they apply
to LPs that we do not know how to solve in 2o(n) time) that they may be seen as complementary to
PCP-based results. Even if it were shown using PCPs that(2− ε)-approximation toVERTEX COVER is
NP-hard, the proof would probably involve even more complex reductions than those in [11]. Thus it

2Erratum: The conference version of this paper [3] arguedΩ(
√

logn) rounds of theLSprocedure were needed to reduce
the integrality gap forVERTEX COVERbelow 2−o(1). However, Cheriyan and Qian [7] observed that the argument in [3] was
incomplete. In the current paper we give a new (complete) proof of theLS round lower bound. Independently, Qian [26] also
provides a fix for the proof in [3]. However, our new proof has the advantage of showing that in fact at leastΩ(logn) rounds
of LS tightenings are needed to reduce the integrality gap below 2−o(1).
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might reduce 3SAT formulae of sizen to VERTEX COVERon graphs of sizenc, wherec is astronomical.
Even if we assume 3SAT has no 2o(n) time algorithms, such a reduction would not rule out an integrality
gap of 1.1 (say) for the relaxations inSection2. In other words, even in a world with PCP-based
results, our methods may be useful for ruling out subexponential approximation algorithms that use
linear programming approaches.

Related work A few authors have viewed the Lovász-Schrijver procedure as a proof system and shown
thatΩ(n) rounds are required to derive certain simple inequalities (e.g., Goemans and Tunçel [18], Cook
and Dash [9]). However, these papers do not consider the issue of how theintegrality gapimproves (or
fails to improve) after a few rounds of theLSprocedure. A recent (and independent) paper by Feige and
Krauthgamer [16] considers the question of integrality gaps, but for the maximumCLIQUE problem on
a random graph with edge probabilities 1/2. They show thatΩ(logn) rounds ofLS+, the semi-definite
version of Lov́asz and Schrijver’s lift-and-project procedure, are necessary and sufficient to reduce the
integrality gap to 1 (with high probability over the choice of the graph). However, this result does not
directly give any lower bound on the approximability ofVERTEX COVER, since in their graphs both the
minimum (integral) vertex cover and the optimal value of the relaxations considered are aboutn.

Subsequently to our work there have appeared several papers proving integrality gaps for relaxations
using both the LP and SDP versions of the Lovász-Schrijver lift-and-project method. Buresh-Oppenheim
et al. [6] show thatΩ(n) rounds ofLS+ are needed to obtain relaxations forMAX -kSAT, k ≥ 5, with
integrality gaps less than(2k− 1)/2k− ε. Alekhnovich et al. [1], building upon [6], show thatΩ(n)
rounds ofLS+ are needed to obtain relaxations forMAX -3SAT with integrality gaps less than 7/8−ε. In
addition they showed thatΩ(n) rounds ofLS+ are needed to obtain relaxations forSET-COVERand rank-
k hypergraphVERTEX COVERwith integrality gaps less than(1−ε) lnn andk−1−ε, respectively. Note
that PCP-based results (such as those of Håstad [20], Feige [15] and Dinur et al. [10]) already ruled out
non-trivial polynomial-time approximation algorithms for these problems (assuming P6= NP). However,
they did not rule out slightly subexponential approximation algorithms (defined as those running in 2nc

time for c < 1) for the reasons mentioned earlier, namely, the blowup in instance size caused by the
PCP-based reductions.

Tourlakis [30], building on techniques used in the current paper, proved thatΩ(log logn) rounds of
LS are needed to obtain relaxations for rank-k hypergraphVERTEX COVER with integrality gaps less
thank− ε.

2 The first family

In this section we prove integrality gaps for linear programs in{x1,x2, . . . ,xn} for bothVERTEX COVER

and INDEPENDENT SETwhere the programs allow any constraint of the formaTx ≤ b such that the
coefficient vectora is nonzero for at mostεn coordinates. In other words, each constraint involves at
mostεn variables. Such linear programs may have exponential size and may not have a polynomial-
time separation oracle. In fact, there are linear programs in this family for which finding such an oracle
would imply P= NP. We only require that all 0/1 vertex covers and 0/1 independent sets in the graph
are feasible for theVERTEX COVERandINDEPENDENT SETrelaxations, respectively.
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The natural candidate graph for exhibiting integrality gaps for these relaxations would be one where
the largest independent set has size at mostαn for some smallα > 0, but every induced subgraph on
εn vertices has an independent set of size nearlyεn/2. However, it turns out that the local property we
need for our graph is somewhat stronger: all small induced subgraphs have smallfractional chromatic
numberwhich we define below.

We will construct the required graph by the probabilistic method inTheorem 2.3. This result appears
to be new, although it fits in a line of results starting with Erdős [13] showing that the chromatic number
of a graph cannot be deduced from “local considerations” (see also Alon and Spencer [2], p.130).

Definition 2.1. A fractionalγ-coloringof a graphG is a multisetC = {U1, . . . ,UN} of independent sets
of vertices (for someN) such that every vertex is in at leastN/γ members ofC. Thefractional chromatic
numberof G is

χ f (G) = inf {γ : G has a fractionalγ-coloring} .

Note that ifG has ak-coloring with color classesU1, . . . ,Uk thenC = {U1, . . . ,Uk} is also a fractional
k-coloring ofG. Consequently,χ f (G)≤ χ(G).

Remark 2.2. If χ f (G) = γ and{U1, . . . ,UN} is a fractionalγ-coloring for G, we will usually assume
without loss of generality that each vertex ofG (by deleting it from a few of theUi if necessary) is in
exactly N/γ sets.

Note that strictly speaking, havingχ f (G) = γ does not guarantee that there exists a fractionalγ-
coloring forG; it only guarantees a fractional(γ +ε)-coloring for allε > 0. Nevertheless, in the interest
of keeping our notation clean, we will always assume that a fractionalγ-coloring does exist (in particular,
we will only consider rationalγ). This slight inaccuracy will not affect the validity of our arguments.

Theorem 2.3. Let 0 < α,δ < 1/2 be constants. Then there exist constantsβ = β (α,δ ) > 0 and n0 =
n0(α,β ,δ ) such that for every n≥ n0 there is a graph with n vertices and independence number at most
αn such that every subgraph induced by a subset of at mostβn vertices has fractional chromatic number
at most2+δ .

Let H be the graph constructed inTheorem 2.3with α,δ arbitrarily close to 0 and letβ be as given
by the theorem.

Theorem 2.4. The vector with all coordinates1+δ

2+δ
is feasible for any linear relaxation for H in which

each constraint involves at mostβn variables. Consequently, since any independent set is the comple-
ment of a vertex cover, and vice versa, the integrality gap is at least(1−α) · 2+δ

1+δ
.

Proof. It suffices to show that the all-1+δ

2+δ
vector is feasible for any set of constraintsAI · x≤ bI where

I ⊆ {1, . . . ,n} has size at mostβn.
So fix any subsetI of at mostβn vertices and let{U1, . . . ,UN} be a fractional(2+δ )-coloring for I

such that each vertex inI is in exactly a 1/(2+δ ) fraction of theUi ’s (seeRemark 2.2). Note that each
I \Ui is a vertex cover in the subgraph induced byI and hence can be extended to a vertex cover of the
entire graph. By definition, the characteristic vector of any such vertex cover extension obeysAI ·x≤ bI .
So since these constraints only involve variables fromI , it follows that any vector inRn that has 1I\Ui

(the characteristic vector ofI \Ui) in the coordinates corresponding toI is also feasible forAI ·x≤ bI .
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Consider the vectorsv1,v2, . . . ,vN ∈Rn wherevi is equal to 1I\Ui
in those coordinates corresponding

to I and is(1+ δ )/(2+ δ ) otherwise. Each such vector satisfiesAI · x≤ bI , so convexity implies that
the same is also true for the average vector1

N(v1 +v2 + · · ·+vN). Since each vertex inI lies in exactly
a 1−1/(2+δ ) = (1+δ )/(2+δ ) fraction of the vertex covers, this average is the all-1+δ

2+δ
vector. Thus

this vector satisfiesAI ·x≤ bI , as desired.

Note that the same construction can also be used to prove integrality gaps for linear relaxations for
INDEPENDENT SET:

Corllary 2.5. EveryINDEPENDENT SETlinear relaxation for H (where H is the same graph as above)
where each constraint in the relaxation has at mostβn variables has integrality gap at least 1

α(2+δ ) .

Proof. Let I be any subset of at mostβn vertices and let{U1, . . . ,UN} be a fractional(2+ δ )-coloring
for I such that each vertex inI is in exactly a 1/(2+δ ) fraction of theUi ’s (seeRemark 2.2). Now define
vectorsv1,v2, . . . ,vN ∈ Rn as follows: Letvi equal 1Ui in those coordinates corresponding toI but have
vi equal 1/(2+δ ) outsideI . Then eachvi is feasible for all constraints involving variables only fromI .
But then, the average of thevi ’s, i.e., the vector with all coordinates 1/(2+δ ), is also feasible for these
constraints.

Denote the size of the maximum independent set in a graphG by α(G). The above argument in fact
yields the following more general theorem.

Theorem 2.6. Let G be a graph on n vertices such that every subgraph induced by a set of at mostβ (n)
vertices has fractional chromatic number≤C. Then the vector with all coordinates1C is feasible for any
linear relaxation of theINDEPENDENT SETconstraints for G in which each relaxed constraint involves
at mostβ (n) variables. Consequently, the integrality gap for the relaxation is at leastn

α(G)C .

This suggests we can obtain larger integrality gaps forINDEPENDENT SETif we further limit the
number of variables in each constraint. InSection2.2 below we show that this is indeed the case by
exhibiting graphs for whichTheorem 2.6yields the following:

Theorem 2.7. Fix ε,γ > 0. Then there exists a constant n0 = n0(ε,γ) such that for every n≥ n0 there
exists a graph G with n vertices for which the integrality gap of any linear relaxation forINDEPENDENT

SET in which each constraint uses at most nε(1−γ) variables is at least n1−ε .

2.1 Proof ofTheorem 2.3

The proof uses standard random graph theory supplemented with a couple of new ideas. Let us recall
the standard part (see [2]). If we pick a random graphG using the familiarG(n, p) model and choosep
appropriately, then the largest independent set inG has size at mostαn and yet the induced subgraph on
every subset ofβn vertices has an independent set of size close toβn/2. By deleting a few edges—too
few to disturb anything else—we can assume thatG has no small cycles (i.e., has high girth). Finally,
we will show that these induced subgraphs onβn vertices also satisfy a sparsity condition; this latter
property appears to be previously unknown.
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We then show inLemma 2.13that every high girth graph satisfying this sparsity condition has
fractional chromatic number 2+δ on every induced subgraph with at mostβn vertices. The proof uses
induction on the subgraph size. The main idea in the inductive step is to exhibit a long path inside
every subgraph usingLemma 2.12. Peeling away the path gives a smaller subgraph that is colored
(fractionally) using the inductive assumption.Lemma 2.11is then used to extend this fractional coloring,
completing the induction.

Now we give details. The next lemma concerns the “standard random graph theory” mentioned
above, together with the new sparsity condition.

Lemma 2.8. Given real numbersα,η with 0 < α < 1/250and0 < η < 1/2, let λ > e2 andβ > 0 be
such that

2
logλ

λ
≤ α (2.1)

and
β < (eλ )−2/η . (2.2)

Let g≥ 3 be an integer such that g≤ logn/(3logλ ). Then there is an integer n0 = n0(λ ,η ,g) such that
for every n≥ n0 there is a graph H of order n, girth at least g and independence number at mostαn
such that every subgraph of H with`≤ βn vertices contains at most(1+η)` edges.

Remark 2.9. Condition (2.1) is satisfied if we take

λ = (3/α) log(1/α) .

Proof ofLemma 2.8. Let us consider the space of random graphsG(n, p) with p = λ/n. We will show
that a graphGn,p drawn randomly from this space, modulo a few small alterations, satisfies with high
probability the three properties required ofH in the statement of the lemma.

Let 0< α0 < α be such that
1+ log(1/α0) < λα0/2 . (2.3)

Inequality (2.1) implies that we can choose such anα0. In order to avoid unnecessary clutter, in what
follows, we shall drop the integrality signs (in particular, we shall writeα0n instead ofdα0ne); this slight
inaccuracy will not endanger the validity of the arguments. Also, as usual, we shall assume thatn is large
enough to make our inequalities hold.

1. The probability that for somè, 4≤ ` ≤ 1/η , some`-set inGn,p spans at least̀+ 1 edges is at
most

1/η

∑̀
=4

(
n
`

)( (`
2

)
`+1

)(
λ

n

)`+1

≤
1/η

∑̀
=4

(en
`

)`
(

e`(`+1)
2

`+1

)`+1(
λ

n

)`+1

=
1
en

1/η

∑̀
=4

`

(
e2λ

2

)`+1

= O(n−1) .
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Similarly, the probability that for somè, 1/η < ` < βn, somè -set spans at least(1+η)` edges
is at most

βn

∑
`=1/η

(
n
`

)( (
`
2

)
(1+η)`

)(
λ

n

)(1+η)`

≤
βn

∑
`=1/η

[(en
`

)( è
2(1+η)

)1+η(
λ

n

)1+η
]`

≤
βn

∑
`=1/η

[
e2(`/n)η

λ
1+η
]`

. (2.4)

We bound (2.4) by first splitting the sum into two quantities and bounding each of them: Letting
C = e2λ 1+η we have that,

√
n

∑
`=1/η

[
e2(`/n)η

λ
1+η
]` ≤ √

n

∑
`=1/η

(
C√
n

)`

=
(

C√
n

)1/η+1 1− (C/
√

n)
√

n−1/η

1− (C/
√

n)
= O(n−1) .

On the other hand, (2.2) implies thatD = e2β ηλ 2 < 1, and hence,

βn

∑
`=

√
n+1

[
e2(`/n)η

λ
1+η
]` ≤ βn

∑
`=

√
n

D` ≤ D
√

n+1

1−D
= O(n−1) .

So, (2.4) is at mostO(n−1).

Hence, the probability thatall `-sets,` ≤ βn, in Gn,p span at most(1+ η)` edges is at least
1−O(n−1).

2. Let I = I(Gn,p) be the number of independent sets ofdα0ne vertices inGn,p. Note that

E(I) =
(

n
α0n

)(
1− λ

n

)(α0n
2 )

≤
((

e
α0

)
e−λα0/2

)α0n

= γ
α0n
0 .

Inequality (2.3) implies thatγ0 < 1, so the probability thatGn,p contains an independent set ofα0n
vertices is exponentially small.

3. Call a cycle inGn,p short if its length is less thang. The expected number of short cycles is less
than

g−1

∑̀
=3

n`

`

(
λ

n

)`

=
g−1

∑̀
=3

λ `

`
≤ n1/3 .

By Markov’s inequality,Gn,p has at mostn1/2 short cycles with probability at least 1−O(n−1/6).
Deleting an edge from each of these cycles then gives a graph of girth at leastg.

Consequently, with probability 1−O(n−1/6), Gn,p has no set of̀ ≤ βn vertices spanning more than
(1+η)` edges, and moreover, if we delete an edge from each short cycle then the independence number
of the new graphH = G′

n,p is at most
α0n+

√
n < αn .

This graphH has the required properties.
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Now we establish some basic properties ofχ f . It is easy to check that a path with at least one edge
has fractional chromatic number 2. In particular, a graph has fractional chromatic number less than 2 if
and only if it is an independent set. The proof of the next lemma is left to the reader.

Lemma 2.10. 1. If Ck denotes the cycle of length k thenχ f (C2`) = 2 andχ f (C2`+1) = (2`+1)/`.

2. If |V(G1)∩V(G2)| ≤ 1 thenχ f (G1∪G2) = max
{

χ f (G1), χ f (G2)
}

.

The next Lemma concerns the fractional chromatic number of a graph that contains a long path (i.e.,
the vertices on the path’s interior have no edges outside the path edges).

Lemma 2.11. Let ` ≥ 2 and let G be a graph obtained by adding a path x0x1 . . .x`+1 to a graph G′,
where x0,x`+1 ∈V(G′) and xi 6∈V(G′) for 1≤ i ≤ `. Thenχ f (G)≤ max{χ f (G′), 2`

`−1}.

Proof. Let χ f (G′) = 1/γ and suppose first thatγ > 1/2. ThenG is an independent set and the lemma
follows since paths have fractional chromatic number 2.

So assumeγ ≤ 1/2. By Remark 2.2we can assume without loss of generality that there exists a
multisetC′ = {U ′

1, . . . ,U
′
N} of independent sets inG′ such that every vertex ofG′ is in exactlyγN of

these sets. So sincex0 ∈ G′ andγ ≤ 1/2, there exists a multisetA containing exactlyN/2 sets fromC′

such that no set inA containsx0. Similarly, there exists a multisetB of N/2 sets taken fromC′ such that
no set inB containsx`+1.

Fix i, 1≤ i ≤ n. We will define a colouringCi for G\ {xi} (i.e., G with xi removed) by extending
the setsU ′

h in C′ to independent setsUh in G\{xi}. Moreover, our colouring will have the property that
eachx j , 1≤ j ≤ `, j 6= i will be in exactly half the sets ofCi . Our approach will be as follows: Fix a set
U ′

h ∈ C′. If U ′
h ∈A we will then add toUh every other node in the path fragment fromx1 to xi−1 starting

with x1: That is,x1,x3,x5, . . . will be in Uh, but x2,x4, . . . will not. If insteadU ′
h 6∈ A thenx2,x4,x6, . . .

will be in Uh, butx1,x3, . . . will not. Similarly, we will decide which of the nodesxi+1,xi+2, . . . ,x` to add
to Uh depending on whether or notU ′

h is in B. SinceA andB each contain exactly half the sets ofC′, it
will follow that eachx j , 1≤ j ≤ `, j 6= i, is in exactly half the sets ofCi .

Formally, the exact construction is as follows: FixU ′
h ∈ C′. For 1≤ j ≤ i, if U ′

h ∈ A then addx j to
Uh if j is odd; if insteadU ′

h 6∈A then addx j to Uh if j is even. Fori ≤ j ≤ `, if U ′
h ∈B then addx j to Uh

if `− j is even; if insteadU ′
h 6∈B then addx j to Uh if `− j is odd.

Let C = ∪Ci . This multiset of̀ N sets is then a fractional colouring forG. Note that every vertex of
G′ is in γ`N sets ofC. Moreover, everyxi , 1≤ i ≤ `, is in 1

2(`−1)N sets. Consequently, every vertex of
G is in at least a min{γ, `−1

2` } fraction of the sets ofC. Hence,χ f (G)≤ max{1
γ
, 2`

`−1}.

For realk > 1 call a graphk-sparseif it has no subgraph with̀ vertices and more thank` edges.
Hence, sparsity quantifies (half of) the maximum average degree of subgraphs. This concept is closely
related to that ofdegeneracy: Recall that a graph isk-degenerateif every subgraph has a vertex of degree
at mostk. Hence, ifk is a natural number andε > 0, then a(k+1

2 − ε)-sparse graph isk-degenerate;
conversely, everyk-degenerate graph isk-sparse.

Recall that a graph isk-connectedif there does not exist a set ofk− 1 vertices whose removal
disconnects the graph. By length of a path we will mean the number of edges.
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Lemma 2.12. Let ` ≥ 1 be an integer and0 < η < 1
3`−1, and let G be a 2-connected(1+ η)-sparse

graph which is not a cycle. Then G contains a path of length at least`+1 whose internal vertices have
degree2 in G.

Proof. Suppose thatG hasn vertices and does not contain a path of length`+1 with ` internal vertices
of degree 2 inG. SinceG is a 2-connected graph with more edges than vertices,G consists of a certain
k≥ 2 number of branch-vertices (i.e., vertices of degree at least 3) and the induced paths joining them,
sayP1, . . . ,Pm, wherem≥ d3k/2e, and all internal nodes in these paths have degree 2. Let`i ≤ ` denote
the length ofPi . Then,

n = k+
m

∑
i=1

(`i −1) = k−m+e(G)≤ k−m+(1+η)n ,

and so,m−k≤ ηn. On the other hand,

n = k+
m

∑
i=1

(`i −1)≤ k+m(`−1) ,

and hencem− k ≤ η(k+ m(`− 1)). But then, sincem≥ d3k/2e, it follows that η ≥ 1/(3`− 1), a
contradiction.

Lemma 2.13. Let h≥ 2 be an integer and0 < η < 1
3h+2. Then every(1+ η)-sparse graph G of girth

at least2h hasχ f (G)≤ 2+ 2
h.

Proof. We use induction on the number of vertices. The base case is trivial. Assume the statement is true
when the number of vertices is at mostmandG is a graph withm+1 vertices. If it is not 2-connected, it
has a vertexv whose removal disconnects the graph and hence we can complete the inductive step using
part 2 ofLemma 2.10. So assumeG is 2-connected. If it is a cycle then its length must be at least 2h, and
henceχ f is at most 2+ 1

h by part 1 ofLemma 2.10. So assumeG is not a cycle. But then, byLemma 2.12,
G contains a path of lengthh+2 whose internal vertices have degree 2 inG. LetG′ be the graph obtained
from G by deleting these internal vertices (together with the edges incident with them). By the induction
hypothesis,χ f (G′)≤ 2+ 2

h, and so byLemma 2.11we haveχ f (G) = max{χ f (G′),2+ 2
h} ≤ 2+ 2

h. This
completes the induction and the Lemma is proved.

We can now proveTheorem 2.3.

Proof ofTheorem 2.3. Set h = d2/δe, g = 2h and η = 1
3h+3. Chooseλ > e2 and β > 0 to satisfy

inequalities (2.1) and (2.2). Let H be a graph of ordern whose existence is guaranteed byLemma 2.8.
Thus,H has independence number at mostαn, and if G is a subgraph ofH with at mostβn vertices
thenG is (1+η)-sparse and has girth at leastg = 2h. Hence, byLemma 2.13, χ f (G)≤ 2+ 2

h ≤ 2+δ ,
completing the proof.
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2.2 Proof ofTheorem 2.7

Throughout this section, log will denote base-2 logarithms.
By Theorem 2.6, to obtain a large integrality gap we need to construct graphs where the indepen-

dence and local fractional chromatic numbers are as small as possible. One way to do this is using graph
products.

Definition 2.14. Theinclusive graph product G×H of two graphsG andH is the graph onV(G×H) =
V(G)×V(H) where{(x,y),(x′,y′)} ∈ E(G×H) iff (x,x′) ∈ E(G) or (y,y′) ∈ E(H). The notationGk

indicates the graph resulting by taking thek-fold inclusive graph product ofG with itself.

The key observation is thatα(G×H) = α(G)×α(H) andχ f (G×H) = χ f (G)χ f (H) (the former
fact is easy; for the latter see [14] for a proof). Moreover, if all sets of size at mostβn have fractional
chromatic numberC in G, then all sets of size at mostβn in Gk have fractional chromatic numberCk.
So taking products of a graph with itself drives down the relative sizes of both the independence and
local fractional chromatic numbers. However, since the resulting graph is much larger, the fractional
chromatic number is small only for negligibly sized subgraphs. To get around this we instead consider
an appropriately chosen (small) random subgraph ofGk. The particular construction we use is due
to Feige [14]. By choosing each vertex ofGk independently at random with probabilityα(G)−k and
analyzing the resulting induced subgraph, Feige proves the following theorem (we sketch a proof below
for completeness; see [14] for details):

Theorem 2.15 (Feige [14]). There exists an integer n0 such that for every graph G on n≥ n0 vertices
and any integer k, there exists a graph Gk such that:

1. Gk is a vertex induced subgraph of Gk.

2. 1
2

(
n

α(G)

)k ≤ |V(Gk)| ≤ 2
(

n
α(G)

)k
.

3. α(Gk)≤ kα(G) lnn
ln(kα(G) lnn) .

Proof. (Sketch) Select each vertex ofGk independently and at random with probabilityα(G)−k. Let
Ĝ be the induced subgraph ofGk obtained by this process. We show thatĜ satisfies the above three
properties with high probability.

By construction,Ĝ is an induced subgraph ofGk. Moreover, the probability that|V(Ĝ)| deviates by
more than a factor of 2 from its expectation is negligible. For the last property, fix a maximal independent
setI in Gk. The expected number of vertices fromI in Ĝ is at most 1. Chernoff bounds sharply bound
the probability that more thankα(G) lnn

ln(kα(G) lnn) vertices ofI survive inĜ. The last property can now be seen

to hold with high probability by observing thatG contains at mostnα(G) maximal independent sets and
by observing that all maximal independent sets inGk are the direct product ofk maximal independent
sets inG. In particular, the probability that more thankα(G) lnn

ln(kα(G) lnn) vertices of any maximal independent

set ofGk survive inĜ can be shown to go to 0 asn grows.

Our strategy for provingTheorem 2.7will then be as follows: We will start with a graphG where
both the independence number and local fractional chromatic number are already small (such a graph
will exist by Theorem 2.3) and then apply Feige’s randomized graph product to it.
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Now the details. Fix arbitrarily small constantsα,δ > 0 andn> 0 such thatn≥ n0 wheren0 is from
Theorem 2.15. Provided thatn is chosen sufficiently large,Theorem 2.3implies that there exists a graph
G onn vertices such thatα(G)≤ αn and such that for some constantβ > 0, all induced subgraphs ofG
with at mostβn vertices have chromatic number≤ 2+δ .

Fix an arbitrarily small constantd > 0 and letGk be the graph given byTheorem 2.15for k = d logn.
Let N = |V(Gk)|. Note thatN = Θ(α−k) = Θ(nd log(1/α)). On the other hand, all subsets ofGk of size at
most

βn = Θ
(

N
1/d

log(1/α)

)
(2.5)

have fractional chromatic number≤ (2+δ )k.
By Theorem 2.6it follows that any linear relaxation of the independent set constraints forGk where

the relaxed constraints contain at mostβn variables has integrality gap (thẽΘ notation indicates asymp-
totic order up to logarithmic factors):

Θ

(
α−k

(2+δ )k kαnlnn
ln(kαnlnn)

)
= Θ̃

(
nd(log(1/α)−log(2+δ ))−1

)
= Θ̃

(
N1− 1/d+log(2+δ )

log(1/α)

)
. (2.6)

Since we can takeα andδ to be arbitrarily small inTheorem 2.3(providedn is large enough), and since
d > 0 can also be chosen arbitrarily small, it follows that we can simultaneously make (2.5) more than
Nε(1−γ) and (2.6) more thanN1−ε . The theorem follows.

3 The second family

For ann-vertex graphG, let VC(G) denote the convex hull of all integral vertex covers forG, i.e., the
convex hull of all 0/1 vectorsx∈Rn satisfyingxi +x j ≥ 1 for all edges{i, j} in G. All non-trivial facets
of the polytope VC(G) can be expressed in the formaTx≥ b wherea∈ ZV

+ andb∈ Z+. (By non-trivial
we exclude facets of the formxi ≥ 0 andxi ≤ 1, and require that at least two coordinates ofa are non-
zero.) Note moreover that the non-trivial facets ofany relaxation for VC(G) lying in [0,1]n must also
be of the formaTx≥ b wherea∈ ZV

+ andb∈ Z+.
While VC(G) requires exponentially many non-trivial facets to completely specify, it may be that

a smaller subset of these facets yields a linear relaxation with integrality gap less than 2− ε for some
ε > 0. In this section we consider relaxations defined by those facets of VC(G) having low defect.

The defectof a facetaTx ≥ b of VC(G) is defined to be 2b−∑i ai . It follows from the proof of
an analogous result for the Independent Set polytope by Lovász and Schrijver [24] that this quantity is
always non-negative for facets of VC(G). For more about defects of facets see [24] and also Lipt́ak and
Lovász [23].

We now generalize the results ofSection2 to any linear relaxation forVERTEX COVER defined by
facets of VC(G) with defect at mostεn:

Theorem 3.1. For all γ > 0 there exists a constantε > 0 such that the integrality gap is at least2− γ

for any relaxation forVERTEX COVER consisting of inequalities of the form aTx≥ b (a∈ Zn
+,b∈ Z+)

and defect at mostεn.
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Proof. Let α,δ > 0 be constants such that(1−α)2+δ

1+δ
≥ 2− γ, and letH be the graph constructed in

Theorem 2.3for these constants. Let the defect of our relaxation be at mostεn whereε = βδ/(2+δ ).
The theorem will follow by showing that the vectorxδ with all coordinates(1+δ )/(2+δ ) is feasible.

There are two types of facetsaTx≥ b. If ∑i ai ≤ βn then the constraint only involvesβn variables
and so the feasibility of the vectorxδ follows as inTheorem 2.4. If ∑i ai > βn then the feasibility ofxδ

follows by direct substitution:

∑
i

ai
1+δ

2+δ
= ∑

i

ai
δ

2(2+δ )
+

1
2 ∑

i

ai >
βnδ

2(2+δ )
+

1
2 ∑

i

ai =
εn
2

+
1
2 ∑

i

ai ≥ b .

4 The third family

Consider the standard relaxation forVERTEX COVER:

xi +x j ≥ 1 ∀{i, j} ∈ E (Edge constraint) (4.1)

In this relaxation thexi ’s are real numbers in[0,1]. Suppose we wish to tighten the relaxation to force
thexi ’s to be 0/1 in any optimal solution. To this end, we could introduce any constraints satisfied by
0/1 vertex covers. For instance, thexi ’s can be required to satisfy for every odd-cycleC,

∑
i∈C

xi ≥
|C|+1

2
(Odd-cycle constraint) (4.2)

Many other families of inequalities satisfied by 0/1 vertex covers are known, but a complete listing will
probably never be found because of complexity reasons.

Lovász and Schrijver [24] give an automatic method for generating over many rounds all valid
inequalities. More generally, they give a method for obtaining tighter and tighter relaxations for any
0/1 optimization problem starting from an arbitrary relaxation. The idea is to “lift” ton2 dimensions
and then project back ton-space. This is why the procedure is called “lift-and-project” or “lifting.”
The motivation is to try to simulate the power of quadratic programs. Solving quadratic programs is of
course NP-hard since adding the constraintsxi(1−xi) = 0 to a linear relaxation forces 0/1 answers. For
example, all 0/1 vertex covers satisfy

x2
i = xi (4.3)

(1−xi)(1−x j) = 0 ∀{i, j} ∈ E . (4.4)

To linearly simulate these constraints, we can introduce new linear variablesYi j to “represent” the prod-
uctsxix j and then demand that the “lifted” variables satisfyxi = Yii and 1−xi −x j +Yi j = 0 for all edges
{i, j}. We can then take positive linear combinations of these constraints to eliminate all “quadratic”
terms and obtain constraints using only the original variablesxi .

Formally, given a relaxation

aT
r x≥ b r = 1,2, . . . ,m (4.5)

0≤ xi ≤ 1 i = 1,2, . . . ,n , (4.6)
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one round ofLS produces a system of inequalities in(n+ 1)2 variablesYi j for i, j = 0,1, . . . ,n. As
already mentioned, the intended “meaning” is thatYi j = xix j andY00 = 1,Y0i = xix0 = xi , andY00 = 1 so
every quadratic expression in thexi ’s can be viewed as a linear expression in theYi j ’s. This is how the
quadratic inequalities below should be interpreted. The following inequalities are derived in one round:

(1−xi)aT
r x≥ (1−xi)b ∀i = 1, . . . ,n, ∀r = 1, . . . ,m

xia
T
r x≥ xib ∀i = 1, . . . ,n, ∀r = 1, . . . ,m

xixi = xi ∀i = 1,2, . . . ,n

The last constraint corresponds to the fact thatx2
i = xi for 0/1 variables. Since any positive combination

of the above inequalities is also implied, we can use such combinations to eliminate all non-linear terms.
Lovász and Schrijver show that every inequality valid for the integral hull is generated in at most

n rounds. Moreover, they show that the set of inequalities derivable in one round for theVERTEX

COVER relaxation are exactly the odd-cycle inequalities. To illustrate, we now show how to derive in
one round the odd-cycle inequalityx1 + x2 + x3 ≥ 2 for a triangle on nodes{1,2,3} starting from the
edge constraints (4.1). One round ofLSgenerates the following inequalities (amongst others):

(1−x1)(x1 +x2)≥ 1−x1 (4.7)

(1−x2)(x2 +x3)≥ 1−x2 (4.8)

(1−x3)(x1 +x3)≥ 1−x3 (4.9)

x1(x2 +x3)≥ x1 (4.10)

x2(x1 +x3)≥ x2 (4.11)

Adding inequality (4.7) twice to the sum of the remaining four inequalities and then simplifying using
the rulex2

i = xi givesx1 +x2 +x3 ≥ 2 as desired.
No exact characterization exists for the inequalities derivable in subsequent rounds. However, we do

know that the set of inequalities derivable inO(1) rounds has a polynomial-time separation oracle. For
more details see [24].

To understand our results, the reader only needs to know the next Lemma taken from [24] and which
gives an alternate characterization ofLS liftings useful for proving lower bounds. The notation uses
homogenized inequalities. Let FR(G) be the cone inRn+1 that contains a vector(x0,x1, . . . ,xn) iff it
satisfies 0≤ xi ≤ x0 for all i as well as the edge constraintsxi + x j ≥ x0 for each edge{i, j} ∈ G. All
cones below will be inRn+1 and we are interested in the slice cut out by the hyperplanex0 = 1. Denote
by Nr(FR(G)) the feasible cone of all inequalities obtained fromr rounds of theLS lifting procedure.
Let ei denote theith unit vector so thatYei denotes theith column ofY. The next lemma defines the
effect of one round.

Lemma 4.1 ([24]). If K is a cone inRn+1, then x∈ Nm(K) iff there is an(n+ 1)× (n+ 1) symmetric
matrix Y satisfying

1. Ye0 = diag(Y) = x.

2. For 1≤ i ≤ n, both Yei and Y(e0−ei) are in Nm−1(K).
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Following [6] we will call the matrixY witnessing thatx∈ Nm(K) in the above lemma aprotection
matrix since it “protects”x for one round ofLS tightening.

In practice, we will only be concerned with showing that vectorsx ∈ Rn+1 with x0 = 1 survive a
round of lifting. For such points, we have the following corollary ofLemma 4.1:

Corllary 4.2. Let K be a cone inRn+1 and suppose x∈Rn+1 where x0 = 1. Then x∈ Nm(K) iff there is
an (n+1)× (n+1) symmetric matrix Y satisfying

1. Ye0 = diag(Y) = x.

2. For 1≤ i ≤ n: If xi = 0 then Yei =~0; If x i = 1 then Yei = x; Otherwise, Yei/xi , Y(e0−ei)/(1−xi)
both lie in the projection of Nm−1(K) onto the hyperplane x0 = 1.

Our main theorem for this section is the following:

Theorem 4.3. For all ε > 0 there exists an integer n0 and a constantδ (ε) > 0 such that for all n≥ n0,
there exists an n vertex graph G for which the integrality gap of Nr(FR(G)) for any r≤ δ (ε) logn is at
least2− ε.

The proof ofTheorem 4.3relies on the following two theorems. The first (which also follows as a
subcase from the arguments used to proveLemma 2.8) is essentially due to Erdős [12]; see Bollob́as [4],
Theorem 4, Ch VII. The second,Theorem 4.5, will be proved inSection4.2 with an overview of the
argument first given inSection4.1.

Theorem 4.4. For any α > 0 there is an n0(α) such that for every n≥ n0(α) there are graphs on n
vertices with girth at leastlogn/(3log(1/α)) but no independent set of size greater thanαn.

Let yγ denote the vector(1, 1
2 + γ, 1

2 + γ, . . . , 1
2 + γ) where 0< γ < 1

2.

Theorem 4.5. Let G= (V,E) havegirth(G)≥ 16r/γ. Then yγ ∈ Nr(FR(G)).

Proof ofTheorem 4.3. Let γ = ε/8 andα = ε/4, and letn0 be the constant fromTheorem 4.4for this
α. For n≥ n0, let G be then-vertex graph given byTheorem 4.4. Finally, letδ (ε) = ε

384log(4/ε) . Then
by Theorem 4.5, yγ is in Nr(FR(G)) for all r ≤ δ (ε) logn, and hence, the integrality gaps for all these
polytopes is at least 2(1−α)/(1+2γ)≥ 2− ε.

4.1 Intuition for Theorem 4.5

Lemma 4.1(andCorollary 4.2) suggest using induction to proveTheorem 4.5. We first will identify for
each j some large set of vectors within each polytopeN j(FR(G)) called the “palette” forN j(FR(G)).
In stagej of the induction we will show the following: For each vectorx in the palette forN j(FR(G)),
there exists a protection matrixY such that for alli ∈ [n] the vectorsYei andY(e0− ei) all lie in the
palette for the previous polytopeN j−1(FR(G)) (Figure 1). The condition that such a protection matrix
exists can be expressed as an LP. Hence, to show that a protection matrix exists for eachx in the palette
for N j(FR(G)) we show using Farkas’s lemma that the LP is feasible. The theorem then follows since
our definition for the palette forNr(FR(G)) will ensure that it containsyγ .
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“Palettes”

Nr−1(FR(G))Nr−2(FR(G))

. . .

FR(G) Nr(FR(G))

yγ

Figure 1: Chain of dependencies in the proof ofTheorem 4.5: Each palette is contained in its respective
polytope because some other palette is contained in the previous polytope.

Since our protection matrices will be found using LP duality, we will pick the simplest palettes
possible in order to ensure that our LPs are also as simple as possible (and hence easy to analyze). To
understand what desirable properties the palette vectors should have, let us look at the simpler problem
of showing thatyγ ∈ N(FR(G)) (rather than showingyγ ∈ Nr(FR(G))) and make some observations
about the constraints the conditions inCorollary 4.2force upon a protection matrix foryγ .

To that end, consider the projected “columns”Yei/y(i)
γ andY(e0−ei)/(1− y(i)

γ ) of Y (from condi-
tion 2 ofCorollary 4.2). These vectors must satisfy the edge constraints. As will be shown inSection4.4
(see equation (4.14)), the constraints forcing this are given by the following constraint:

αi ≤Yi j +Yik ≤ αi +(α j +αk−1) ∀i ∈ {1, . . . ,n},∀{ j,k} ∈ E . (4.12)

Fix i. If j1 is adjacent toi, then (4.12) implies 1
2 + γ ≤Yii +Yi j1 ≤ 1

2 +3γ. SinceY is a protection matrix

for yγ , it must satisfyYii = y(i)
γ = 1

2 + γ. Hence, 0≤ Yi j1 ≤ 2γ. Now consider a nodej2 at distance
2 from j1. Then (4.12), together with the fact that 0≤ Yi j1 ≤ 2γ for all j1 adjacent toi, imply that
1
2 − γ ≤ Yik ≤ 1

2 + 3γ. In turn, for a nodej3 at distance 3 fromi we must have 0≤ Yi j3 ≤ 4γ; and for
a nodej4 at distance 4 fromi we have1

2 −3γ ≤Yi j4 ≤ 1
2 +3γ. So asj gets further and further fromi,

the constraints onYi j implied by (4.12) get looser and looser so that for nodesj sufficiently far fromi
(distance 2/γ more than suffices) no constraint onYi j is implied. So intuitively, for suchj we should be

able to chooseYi j such that nodej remains1
2 + γ in bothYei/y(i)

γ andY(e0−ei)/(1− y(i)
γ ). Note that

the fact that the coordinates ofyγ are 1
2 + γ instead of12 is crucial in ensuring that the effects of the edge

constraints die out as we get further away from nodei. Note also that we have implicitly assumed that our
graph has girth larger than 2/γ so that two nodes cannot be connected by two paths of different lengths
both less than 2/γ—intuitively this is whyTheorem 4.5requires large girth. We should also mention
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that we have simplified things by ignoring constraints required byCorollary 4.2forcing the projected
“columns” to lie in [0,1]n+1: these tighten the above constraints on theYi j a bit but the intuition given
above is mostly unchanged.

In any case, the above suggests that to proveyγ ∈N(FR(G)) we could use a palette consisting of all
vectors in FR(G) which are1

2 + γ everywhere except perhaps on some ball of radius 2/γ in G. As such,
we can add “palette constraints” to the LP definingY forcing all nodesj distant fromi to be 1

2 + γ in

bothYei/y(i)
γ andY(e0−ei)/(1−y(i)

γ ). In fact, sinceY must also be symmetric, the actual constraints we
will add will force the following: for all pairs of nodesi, j with distance at least 2/γ between them, the

jth nodes inYei/y(i)
γ andY(e0−ei)/(1−y(i)

γ ), and theith nodesYej/y( j)
γ andY(e0−ej)/(1−y( j)

γ ) must
all be 1

2 + γ.
The proof ofTheorem 4.5will use generalized versions of the above palette: The palettes for each

polytopeN j(FR(G)) will consist of vectors from FR(G) that are1
2 + γ except in a few neighbourhoods

(seeDefinition 4.6in Section4.2for the precise statement). For a vectorx in the palette forN j(FR(G))
the LP used to find a protection matrixY for x will have two types of constraints: constraints that
forceY to satisfy the conditions inCorollary 4.2and constraints that force the “columns”Yei/xi and
Y(e0−ei)/(1−xi) to belong to the “palette” forN j−1(FR(G)).

The palettes we will use will have the following property: The diameter of the largest neighbourhood
H in G such thatH consists entirely of nodes with values not equal to1

2 + γ will grow linearly with the
number of rounds. Hence, our method is limited to proving integrality gaps for at mostO(logn) rounds
since only graphs with girthO(logn) yield large integrality gaps.3

4.2 Proof ofTheorem 4.5

The theorem will be proved by induction where the inductive hypothesis requires a set of vectors other
than justyγ to be inNm(FR(G)) for m≤ r (the “palettes” fromSection4.1). These vectors will be
essentially all-(1

2 +γ), except possibly for a few small neighborhoods where the vector can take arbitrary
nonnegative values so long as the edge constraints are satisfied. LetBall(w,R) denote the set of vertices
within distanceRof w in G.

Definition 4.6. Let S⊆ {1, . . . ,n}, R be a positive integer andγ > 0. Then a nonnegative vector
(α0,α1, . . . ,αn) ∈ [0,1]n+1 with α0 = 1 is an(S,R,γ)-vector if the entries satisfy the edge constraints
and if for eachw∈ S there exists a positive integerRw such that

1. ∑w∈S(Rw + 2
γ
)≤ R

2. For distinctw,w′ ∈ S, Ball(w,Rw)∩Ball(w′,Rw′) = /0

3. α j = 1
2 + γ for eachj 6∈ ∪w∈SBall(w,Rw)

We will say that the integers{Rw}w∈S witnessthatα is an(S,R,γ)-vector.

3In the conference version of this paper [3], the palettes were picked such that the diameter of the largest neighbourhood
grewquadraticallyin the number of rounds, thereby yielding integrality gaps only forO(

√
logn) rounds.
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Let R(r) = 0 and letR(m) = R(m+1) + 4
γ

for 0≤ m< r. Note that 4R(m) ≤ girth(G) for 0≤ m≤ r. To

proveTheorem 4.5we will prove the inductive claim below. Since the set of( /0,R(r),γ)-vectors consists
precisely of the vectoryγ , the theorem will then follow as a subcase of the casem= r.

Inductive Claim for Nm(FR(G)): For every setSof at mostr −m vertices, every(S,R(m),γ)-vector is
in Nm(FR(G)).
Base case m= 0. Trivial since(S,R(0),γ)-vectors satisfy the edge constraints forG.

Proof for m+ 1 assuming truth for m.Let α be an(S,R(m+1),γ)-vector where|S| ≤ r −m− 1. To
show thatα ∈ Nm(FR(G)) it suffices to find a protection matrixY for α satisfying the properties of
Corollary 4.2. We exploit the structure of(S,R,γ)-vectors and prove some important structural properties
of these vectors inLemma 4.7, which then enables us to argue that such a protection matrix exists thereby
completing the induction step.

Note first thatα is trivially an (S∪ i,R(m),γ)-vector for anyi ∈ G. Lemma 4.7, which we now state
and prove inSection4.3below, says that for appropriate setsS′, |S′| ≤ r −m, α is also an(S′,R(m),γ)-
vector enjoying crucial additional structural properties.

Lemma 4.7. Let i be such thatαi 6∈ {0,1}. Then there exists a set Si ⊆ {1, . . .n}, |Si | ≤ r −m, and

positive integers{R(m)
w }w∈Si such that,

1. α is an(S′,R(m),γ)-vector with witnesses{R(m)
w }w∈Si

2. i ∈ ∪w∈Si Ball(w,R(m)
w )

3. For each` 6∈ ∪w∈Si Ball(w,R(m)
w ), any path between i and̀in G contains at least2

γ
consecutive

vertices̀ such thatα` = 1
2 + γ

By the induction hypothesis, for anyS′ ⊆ {1, . . . ,n} such that|S′| ≤ r −m, every(S′,R(m),γ)-vector
is in Nm(FR(G)). Hence, to show thatα ∈ Nm+1(FR(G)) it suffices byCorollary 4.2to exhibit an
(n+1)× (n+1) symmetric protection matrixY that satisfies:

A. Ye0 = diag(Y) = α,

B. For eachi such thatαi = 0, we haveYei = 0; for eachi such thatα1 = 1, we haveYe0 = Yei ;
otherwise,Yei/αi andY(e0−ei)/(1−αi) are(Si ,R(m),γ)-vectors, whereSi as well as the integers

{R(m)
w }w∈Si witnessing that these vectors are(Si ,R(m),γ)-vectors are given byLemma 4.7for i.

We will complete the proof of the induction step (and hence ofTheorem 4.5) by showing inSection4.4
below that a matrixY exists satisfying conditionsA andB.

4.3 Proof ofLemma 4.7

Let {R(m+1)
w }w∈S witness thatα is an(S,R(m+1),γ)-vector and letC = ∪w∈SBall(w,R(m+1)

w ). There are
two cases depending on whetherBall(i, 2

γ
) intersectsC or not.

In the first (easy) case,Ball(i, 2
γ
) does not intersectC. Then letSi = S∪{i}, let R(m)

i = 2
γ
, and let

R(m)
w = R(m+1)

w for w∈ S. It is easy to see that the conditions of the lemma are satisfied by these choices.
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So consider the second case whereBall(i, 2
γ
) does intersectsC. Let

T1 =
{

w∈ S: i ∈ Ball

(
w,R(m+1)

w +
2
γ

)}
.

That is,T1 consists of all points inSwhose balls, slightly enlarged, containi. Note that it may be that
i ∈ S, in which casei ∈ T1.

Now let

D =
⋃

w∈T1

Ball

(
w,R(m+1)

w +
2
γ

)
.

Since∑w∈S(R
(m+1)
w + 2

γ
)≤R(m+1) < 1

2 girth(G)− 2
γ
, it follows thatD is a tree. Letq be a longest path in

D and letw1 be a node in the middle of this path. Then certainly,

D ⊆ Ball

(
w1, ∑

w∈T1

(
R(m+1)

w +
2
γ

))
.

We will now increase the size of this “big ball” aroundw1 (perhaps also moving its centre in the process)
until there are no pointsw∈ S outside the “big ball” for whichBall(w,R(m+1)

w + 2
γ
) intersects the “big

ball”. We do this as follows:
SupposeBall(w1,∑w∈T1

(R(m+1)
w + 2

γ
)) intersectsBall(w′,R(m+1)

w′ + 2
γ
) for somew′ ∈ S\T1. Add w′ to

T1 and call the new setT2. Reasoning as before, there existsw2 ∈ G such that,

⋃
w∈T2

Ball

(
w,R(m+1)

w +
2
γ

)
⊆ Ball

(
w2, ∑

w∈T2

(
R(m+1)

w +
2
γ

))
.

In general, at stagej if Ball(w j ,∑w∈Tj
(R(m+1)

w + 2
γ
)) intersectsBall(w′,R(m+1)

w′ + 2
γ
) for somew′ ∈ S\Tj ,

then addw′ to Tj , call the new setTj+1, and find a neww j+1 ∈ G (using again the same arguments as
before) such that,

⋃
w∈Tj+1

Ball

(
w,R(m+1)

w +
2
γ

)
⊆ Ball

(
w j+1, ∑

w∈Tj+1

(
R(m+1)

w +
2
γ

))
.

Continue in this way until the first stagek for which no pointw′ in S\Tk such thatBall(w′,R(m+1)
w′ + 2

γ
)

intersectsBall(wk,∑w∈Tk
(R(m+1)

w + 2
γ
)). Let T = Tk andu = wk.

We can now defineSi and{R(m)
w }w∈Si : Let Si = (S\T)∪{u}. Forw∈ S\T, let R(m)

w = R(m+1)
w ; let

R(m)
u =

2
γ

+ ∑
w∈T

(
R(m+1)

w +
2
γ

)
.

To complete the proof of the lemma we need to show thatα is an(Si ,R(m),γ)-vector witnessed by these

{R(m)
w } and that the remaining two conditions in the statement of the lemma are satisfied.
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Note first that

∑
w∈Si

(
R(m)

w +
2
γ

)
= ∑

w∈S\T

(
R(m)

w +
2
γ

)
+
(

R(m)
u +

2
γ

)

= ∑
w∈S\T

(
R(m+1)

w +
2
γ

)
+

(
∑

w∈T

(
R(m+1)

w +
2
γ

)
+

4
γ

)

= ∑
w∈S

(
R(m+1)

w +
2
γ

)
+

4
γ
≤ R(m+1) +

4
γ

= R(m) .

The inequality above follows from the fact thatα is an(S,R(m+1),γ)-vector witnessed by the integers

R(m+1)
w . Henceα satisfies condition (1) of being an(Si ,R(m),γ)-vector witnessed by the integers{R(m)

w }.

Next note that by construction,Ball(u,R(m)
u ) does not intersect∪w∈S\TBall(w,R(m)

w ). Moreover,

sinceα is an(S,R(m+1),γ)-vector witnessed by the integersR(m+1)
w , it follows that

Ball(w,R(m)
w )∩Ball(w′,R(m)

w′ ) = /0

for distinct w,w′ ∈ S\T. Also, by construction,α j = 1
2 + γ for all j 6∈ ∪w∈Si Ball(w,R(m)

w ). Henceα

satisfies conditions (2) and (3) of being an(Si ,R(m),γ)-vector witnessed by the integers{R(m)
w }.

Next note that by construction, we have on one hand that

⋃
w∈T

Ball

(
w,R(m+1)

w +
2
γ

)
⊆ Ball

(
u,R(m)

u − 2
γ

)
.

On the other hand,Ball(u,R(m)
u ) does not intersect∪w∈S\TBall(w,R(m+1)

w ). Sinceα is an(S,R(m+1),γ)-

vector witnessed by the integersR(m+1)
w , it thus follows from the definition of such vectors that for all

verticesk in Ball(u,R(m)
u )\Ball(u,R(m)

u − 2
γ
), we haveαk = 1

2 + γ. Hence condition (3) of the lemma
holds.

Finally, condition (2) of the lemma holds since by constructioni ∈
⋃

w∈T Ball(w,R(m+1)
w + 2

γ
). The

lemma follows.

4.4 Existence ofY

We will show thatY exists by representing conditionsA andB as a linear program and then showing
that the program is feasible. This approach was first used in [24] and subsequently in the conference
version of this paper.

Our notation will assume symmetry, namely,Yi j will representY{i, j}. ConditionA requires that:

Ykk = αk, ∀k∈ {1, . . . ,n} . (4.13)

ConditionB requires that the vectorsYei/αi andY(e0−ei)/(1−αi) are(Si ,R(m),γ)-vectors. In par-
ticular, we need constraints on the variablesYi j forcing these vectors to satisfy both the edge constraints
as well as the extra structural properties enjoyed by(Si ,R(m),γ)-vectors.
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The following constraints imply thatYei/αi andY(e0−ei)/(1−αi) satisfy the edge constraints: For
all i ∈ {1, . . . ,n} and all{ j,k} ∈ E:

αi ≤Yi j +Yik ≤ αi +(α j +αk−1) , (4.14)

To see that the above inequalities forceYei/αi andY(e0−ei)/(1−αi) to satisfy the edge constraints
note first thatYei/αi satisfies the edge constraint for some edge{ j,k} iff the jth andkth coordinates of
Yei/αi sum to at least 1. In equations, this requiresYi j /αi +Yik/αi ≥ 1, or equivalentlyαi ≤Yi j +Yik for
the edge{ j,k}. Similarly, the equationYi j +Yik ≤ αi +(α j + αk−1) implies thatY(e0−ei)/(1−αi)
satisfies the edge constraint for edge{ j,k}.

Let (i, t) be a pair of vertices such thatαi ,αt 6∈ {0,1}. Let Si ⊆ {1, . . . ,n} be the set, and{R(m)
w }w∈Si

the witnesses given byLemma 4.7for i. Theni, t are called adistant pairif t 6∈ ∪w∈Si Ball(w,R(m)
w ). (Note

then thatαt = 1
2 + γ.) To ensure thatYei/αi andY(e0−ei)/(1−αi) are(Si ,R(m),γ)-vectors witnessed

by {R(m)
w }w∈Si (as required by conditionB) it suffices to ensure that thetth coordinates ofYei/αi and

Y(e0−ei)/(1−αi) are 1
2 + γ for all distant pairs(i, t). In particular, for all such pairs,

Yit = αiαt = αi(
1
2

+ γ) . (4.15)

Remark 4.8. By Lemma 4.7, distant pairs have the property that every path inG that connects them
contains at least 2/γ consecutive verticesk such thatαk = 1

2 + γ. In particular, any such path contains
2/γ −1 consecutive edges whose endpoints are “oversatisfied” byα by 2γ.

Finally, (Si ,R(m),γ)-vectors must lie in[0,1]n+1. The following constraints imply thatYei/αi and
Y(e0−ei)/(1−αi) are in[0,1]n+1:

0≤Yi j ≤ αi , ∀i, j ∈ {1, . . . ,n} , i 6= j (4.16)

−Yi j ≤ 1−αi −α j , ∀i, j ∈ {1, . . . ,n} , i 6= j (4.17)

Constraints (4.13)–(4.17) suffice to forceY to satisfy conditionsA and B. We will not directly
analyze these constraints but instead analyze the following four constraint families which imply con-
straints (4.13)–(4.17) but are also in a cleaner form:

Yi j ≤ β (i, j), ∀i, j ∈ {1, . . . ,n} (4.18)

−Yi j ≤ δ (i, j), ∀i, j ∈ {1, . . . ,n} (4.19)

Yi j +Yik ≤ a(i, j,k), ∀{ j,k} ∈ E (4.20)

−Yi j −Yik ≤ b(i, j,k), ∀{ j,k} ∈ E (4.21)

Here (1)β (i, j) = αiα j if i, j is a distant pair andβ (i, j) = min(αi ,α j) otherwise; (2)δ (i, j) = −αi

if i = j, δ (i, j) = −αiα j if i, j is a distant pair, andδ (i, j) = 1−αi −α j otherwise; (3)a(i, j,k) =
αi +(α j +αk−1); and (4)b(i, j,k) =−αi . Note that sinceα ∈ [0,1]n+1, β (i, j)+δ (i, j)≥ 0.

To prove the consistency of constraints (4.18)–(4.21), a special combinatorial version of Farkas’s
lemma will be used similar to that used in [24] and the conference version of this paper [3]. Before
giving the exact combinatorial form we require some definitions.
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Let H = (W,F) be the graph whereW = {Yi j : i, j ∈ {1, . . . ,n}} (i.e., there is a vertex for each
variableYi, j ) and the edgesF consist of all pairs{Yi j ,Yik} such that{ j,k} ∈ E. Vertices inW labelled
Yii are calleddiagonal. Given an edge{Yi j ,Yik} in H, call i its bracing nodeand{ j,k} ∈ E its bracing
edge. An edge{i, j} in G is calledoverloadedif αi = α j = 1

2 + γ. An edge{Yi j ,Yik} in H is overloaded
if its bracing edge is overloaded.

Let p be a walkv0,v1, . . . ,vr on H and lete1, . . . ,er be the edges inH traversed by this walk. An
alternating sign assignment(P,N) for p assigns either all the odd or all the even indexed edges ofp to
the setP with the remaining edges assigned toN. Given an alternating sign assignment(P,N) for p, an
endpoint ofp is calledpositive(negative, respectively) if it is incident to an edge inP (N, respectively).
We will be particularly concerned with the positive diagonal endpoints of a walk.

Given a pathp in H with an alternating sign assignment(P,N), let

S(p;P,N)
1 = ∑

{Yi j ,Yik}∈P

a(i, j,k)+ ∑
{Yi j ,Yik}∈N

b(i, j,k) . (4.22)

Suppose the endpoints ofp are labelled byYi j ,Yk`. DefineS(p;P,N)
2 to beD+E whereD is δ (i, j) if Yi j

is a positive endpoint and isβ (i, j) otherwise; andE is δ (k, `) if Yk` is a positive endpoint and isβ (k, `)
otherwise. LetS(p;P,N) = S(p;P,N)

1 +S(p;P,N)
2 .

Lemma 4.9 (Special case of Farkas’s Lemma).The constraints on the variables Yi j are unsatisfiable iff
there exists a walk p on H and an alternating sign assignment(P,N) for p such that S(p;P,N) is negative.

Proof. Note first that by Farkas’s lemma, constraints (4.18)–(4.21) are unsatisfiable iff there exists a
positive rational linear combination of them where the LHS is 0 and the RHS is negative.

Now suppose that there exists a pathp in H and an alternating sign assignment(P,N) such that
S(p;P,N) < 0. Consider the following linear integer combination of the constraints: (1) For each edge
{Yi j ,Yik} ∈ p, if {Yi j ,Yik} ∈ P, add the constraintYi j +Yik ≤ a(i, j,k); if {Yi j ,Yik} ∈ N, add the constraint
−Yi j −Yik ≤ b(i, j,k); (2) For each endpointYi j of p, if it is a negative endpoint add the constraint
Yi j ≤ β (i, j); if it is a positive endpoint add the constraint−Yi j ≤ δ (i, j). But then, for this combination
of constraints the LHS equals 0 while the RHS equalsS(p;P,N) < 0. So by Farkas’s lemma the constraints
are unsatisfiable.

Now assume on the other hand that the constraints are unsatisfiable. So there exists a positive rational
linear combination of the constraints such that the LHS is 0 and the RHS is negative. In fact, by clearing
out denominators, we can assume without loss of generality that this linear combination hasinteger
coefficients. Hence, asβ (i, j)+ δ (i, j) ≥ 0 for all i, j, our combination must contain, without loss of
generality, constraints of type (4.20) and (4.21). Moreover, since the LHS is 0, for eachYi j appearing
in the integer combination there must be a corresponding occurrence of−Yi j . But then, it is easy to see
that the constraints in the integer linear combination can be grouped into a set of paths{pi} in H each
with its own alternating sign assignment such that the RHS of the linear combination equals∑S(pi ;Pi ,Ni)

(for an example, seeFigure 2). But then, since the RHS is negative, it must be that at least one of the
pathsp in the set is such thatS(p;P,N) < 0. The lemma follows.

So to show that the constraints for the matrixY are consistent, we will show thatS(p;P,N) ≥ 0 for any
walk p onH and any alternating sign assignment(P,N) for p.
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−Y12≤−α1α2

Y12+Y13≤ α1 +(α2 +α3−1)
−Y13−Y34≤−α3

Y34+Y35≤ α3 +(α4 +α5−1)
−Y35−Y56≤−α5

Y56≤ α5α6

−Y77≤−α7

Y77+Y78≤ α7 +(α7 +α8−1)
−Y78≤ 1−α7−α8

∈ P1

∈ N1

∈ P1

∈ N1

∈ P2

Walk p2

Walk p1

Y12

Y13

Y35

Y35

Y56

Y77

Y78

Figure 2: A positive integer linear combination of the constraints where the LHS is 0, and which corre-
sponds to two walksp1 andp2 in H with alternating sign assignments(P1,N1) and(P2,N2), respectively.

To that end, fix a walkp on H and an alternating sign assignment(P,N) for p. To simplify notation

we drop the superscript(p;P,N) from S(p;P,N)
1 , S(p;P,N)

2 andS(p;P,N). Let v0,v1, . . . ,vr be the nodes visited
by p in H (a node may be visited multiple times) and lete1, . . . ,er be the edges inH traversed byp. We
divide our analysis into three cases depending on whether none, one or both endpoints ofp are positive
diagonal. We will show that in any of these casesS≥ 0.

We first note three easy facts aboutp used below:

Proposition 4.10. Let C be the subgraph of G induced by the bracing edges for e1, . . . ,en. Then,

1. Subgraph C consists of at most two connected components;

2. If p visits a diagonal node, then C is connected; Moreover, if v0 is diagonal and vr = Yst, then C
contains a path in G from s to t;

3. If p visits at least two diagonal nodes then C contain a cycle.

Proof. We sketch a proof of the first fact; the other two are similar.
Consider the edgese1, . . . ,er in order. As long as the bracing node in successive edges does not

change, then the bracing edges of these successive edges form a pathp′ in G. If the bracing node
changes, say at edgeei in p, the bracing edge forei now starts a new pathp′′ in G. Moreover the last
vertexw in G visited by p′ is the bracing node forei . The bracing edges of the edges followingei in
p now extendp′′ in G until an edgeej is encountered with a new bracing node. But then, the bracing
edge forej must containw. Hence, the bracing edge forej now extends pathp′ in G. Continuing this
argument we see that each time the bracing node changes we go back and forth from having the bracing
edges contributing to the pathsp′ andp′′ in G. Fact (1) follows (also seeFigure 3).
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e1

e2

e3

e4

e5

Y13

Y14

Y45

Y46

Y67

Y12

4

7

Corresponding bracing edges in G

p′

2

3

1

5

6

p′′

1

1

4

4

6

Bracing nodes
change at
these edges

Bracing node
for edge

Continuation of p′ corresponding to e5

Walk p in H

Figure 3: A walkp in H and the corresponding pair of walksp′, p′′ in G formed by the bracing edges in
p. The walksp′, p′′ could meet, e.g., ifp visits a diagonal vertex inH.

Case 1: No endpoint ofp is positive diagonal

Suppose the endpointsv0,vr of p are labelled byYab andYcd, respectively, and consider the following
sumS′2: If v0 is a negative endpoint, then it contributesαaαb to S′2; otherwise it contributes−αaαb.
Similarly, if vr is negative, then it contributesαcαd to S′2 and otherwise it contributes−αcαd. Since
α ∈ [0,1]n+1 and neither endpoint is positive diagonal, it follows thatS2 ≥ S′2. So to prove thatS≥ 0 in
this case, it suffices to showS1 +S′2 ≥ 0.

To that end, consider the following sum:

∑
{Yi j ,Yik}∈P

(−αiα j −αiαk)+ ∑
{Yi j ,Yik}∈N

(αiα j +αiαk) . (4.23)

By definition of an alternating sign assignment it follows that (4.23) telescopes and equalsS′2. Hence,

S≥ S1 +S′2 = ∑
{Yi j ,Yik}∈P

(a(i, j,k)− (αiα j +αiαk))+ ∑
{Yi j ,Yik}∈N

(b(i, j,k)+(αiα j +αiαk)) (4.24)

= ∑
{Yi j ,Yik}∈P

(1−αi)(α j +αk−1)+ ∑
{Yi j ,Yik}∈N

αi(α j +αk−1) . (4.25)

Now the bracing edges for all edges inP andN are inG. Moreover,α satisfies theVERTEX COVERedge
constraints (4.1) for G. Hence,α j + αk ≥ 1 for all edges{Yi j ,Yik} ∈ P∪N. But then, since we always
have 0≤ αi ≤ 1, it follows that all summands in (4.25) are at least 0 and hence,S≥ 0 as desired.
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Case 2: One endpoint ofp is positive diagonal

Assume without loss of generality thatv0 is the positive endpoint and is labelledY11, and suppose the
other endpointvr is labelledYst. There are two subcases:

Subcase 1:{s, t} is a distant pair: By Proposition 4.10, if C is the subgraph ofG induced by the
bracing edges fore1, . . . ,en, then there is a pathp′ in C (and hence inG) from s to t. So sinces, t are
distant,Remark 4.8implies thatp′ contains at least 2/γ −1 consecutiveoverloaded edges.

We first define some notation to refer to the summands appearing in (4.25) which will also be im-
portant in this subcase: For an edgee=

{
Yi j ,Yik

}
in our pathp,

ζ (e) =
{

(1−αi)(α j +αk−1), if
{
Yi j ,Yik

}
∈ P

αi(α j +αk−1), if
{
Yi j ,Yik

}
∈ N

As noted in Case 1,ζ (e)≥ 0 for all e∈ p.
In Case 1 we showed thatS≥ 0 by first defining a sumS′2 such thatS2 ≥ S′2 and then noting that

S1+S′2 = ∑e∈p ζ (e). Unfortunately, in the current subcase, sincep contains a positive diagonal endpoint,
it is no longer true thatS2 ≥ S′2. However, it is easy to see thatS2 ≥ S′2− (α1−α2

1). In particular,
S≥ ∑e∈p ζ (e)− (α1−α2

1) for the current subcase. So sinceζ (e) ≥ 0 always, to show thatS≥ 0 in
the current subcase, it suffices to show that for “many” edgese in p, ζ (e) is “sufficiently large” so that
∑e∈p ζ (e) ≥ α1−α2

1 . The existence of these edges inp will follow from the existence of the 2/γ −1
consecutive overloaded edges inp′.

Assume without loss of generality that 2/γ − 1 = 4q for some integerq and let f1, . . . , f4q be, in
order, the 4q consecutive overloaded edges inp′ (recall thatp′ is the path froms to t in G and defined by
the bracing edges ofp). LetU = {ei1, . . . ,ei4q} be the set of edges inp whose bracing edges correspond
to f1, . . . , f4q (whereei j corresponds withf j ). Note that the edges inU need not occur consecutively in
p. However, using arguments similar to those used inProposition 4.10we can prove the following fact:

Fact 4.11. The edges ofp′ can be divided into two consecutive walksp′1 andp′2 (i.e., all edges inp′1 and
p′2 are consecutive and all edges inp′2 either all occur before or after all edges inp′1) such that ifUi ⊆U
denotes the edges ofp whose bracing edges form the walkp′i , then the order inp of the edgesU1 is the
same as the order of the corresponding bracing edges inp′1, while the order inp of the edgesU2 is the
reverse of the order of the corresponding bracing edges inp′2.

Example 4.12.Supposep = Y11-Y12-Y13-Y16-Y46-Y56. The corresponding walkp′ is 5-4-1-2-3-6 and the
division guaranteed by the above Fact hasp′1 = 1-2-3-6,p′2 = 5-4-1.

Let p′1, p′2 be the division ofp′ andU1, U2 the corresponding subsets ofU for these paths, respec-
tively, guaranteed byFact 4.11for p′. Without loss of generality, assume that the length ofp′1 is at least
2q. In particular, assume without loss of generality thati1 < · · · < i2q. (If insteadp′2 has length greater
than 2q, then we assume without loss of generality thati2q+1 > · · · > i4q and the arguments below are
modified accordingly.)

Let B = {1,3,5, . . . ,2q−1}. Fix some j ∈ B and consider the pairei j ,ei j+1 of edges fromU . Sup-
poseei j = {Yab,Yac}, ei j+1 = {Yuv,Yuw} whereu 6= a. Since the bracing edges for these two edges are
consecutive inp′, all edgesè such thati j < ` < i j+1 have the same bracing node (sayx) and moreover,
this bracing node is different from the bracing nodes inei j or ei j+1. So we havex = c = v (Figure 4).
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g1 = a

g2

gd

gd+1 = u

Path p′′ in G

bracing edges in G
Corresponding

(b,c)

(g1,g2)

(g2,g3)

(gd,gd+1)

(c,w)

Walk p
in H

ei j

ei j+1−1

ei j+1

Yab

Yac

Ycg2

Ycg3

Ycgd

Yuc

Yuw

ei j+1

ei j+2

Figure 4: A portion of a walkp in H in which the bracing node (in this casec) does not change between
edgesei j ,ei j+1, together with the pathp′′ of bracing edges inG for the portion ofp with bracing nodec.

Let Z j = ∑ζ (e), where the sum is overe∈ {ei j ,ei j+1,ei j+2, . . . ,ei j+1−1,ei j+1} (i.e., over the edgesei j

andei j+1, and all edges between them inp).

Claim 4.13. Z j ≥ 2γ/3.

Since j ∈ B was arbitrary and|B| = q, the claim impliesS1 +S′2 ≥ q(2γ/3) ≥ 1/3− γ/6. So since
γ < 1/2 andα1−α2

1 ≤ 1
4 for α1 ∈ [0,1], it follows thatS1 + S′2 ≥ α1−α2

1 , completing the proof that
S≥ 0 in this subcase.

Proof ofClaim 4.13. Supposed = i j+1− i j −1 is odd (the case whered is even is similar). Moreover,
assume thatei j ,ei j+1 ∈ P (the case where they are both inN is similar). Letαa + αu = 1+D. Sinceei j

andei j+1 are overloaded,

ζ (ei j )+ζ (ei j+1) = 2γ(2−αu−αa) = 2γ(1−D) . (4.26)

If D ≤ 2
3, then (4.26) is greater than 2γ/3, and hence so isZ j . So assumeD > 2

3.
Note that the bracing edges ofei j+1,ei j+2, . . . ,ei j+1−1 form a pathp′′ from a to u of lengthd in G.

Let g1, . . . ,gd+1 be the nodes onp′′ whereg1 = a, gd+1 = u (Figure 4). Sinceα satisfies theVERTEX

COVER edge constraints (4.1) for G, ∑d+1
k=1 αgk ≥ (d + 1)/2. In fact, we must have that∑d+1

k=1 αgk ≥

THEORY OFCOMPUTING, Volume 2 (2006), pp. 19–51 44



PROVING INTEGRALITY GAPS WITHOUT KNOWING THE L INEAR PROGRAM

(d + 1)/2+ D (this just says that since the endpoints ofp′′ sum to 1+ D then some edge(s) alongp′′

must be oversatisfied byD). But then,

Z j ≥
(d+1)/2

∑
k=1

ζ (ei j+2k−1) = αc

(
d+1

∑
k=1

αgk −
d+1

2

)
≥
(

1
2

+ γ

)
D >

2γ

3
.

Subcase 2:{s, t} is not a distant pair: Let Sst be the contribution ofYst to S2 (i.e.,Sst = δ (s, t) if vr is a
positive endpoint andSst = β (s, t) if vr is negative). Since the contribution ofY11 to S2 is−α1, it follows
thatS2 = Sst−α1.

For an edgeè =
{
Yi j ,Yik

}
∈ p, let

T̀ =
{

a(i, j,k), if è ∈ P
b(i, j,k), if è ∈ N

Recall thatv0,v1 . . . ,vr are the nodes visited by the walkp and thatei denotes the edge traversed be-
tweenvi−1 andvi . Note then thatS1 = ∑r

`=1 T̀ . Moreover, recall that we have assumed without loss of
generality thatv0 = Y11 andvr = Yst. So sincee1 ∈ P, the following claim impliesSst + ∑r

`=1 T̀ ≥ α1,
and hence thatS≥ 0 in this subcase.

Claim 4.14. Let 1≤ q≤ r and suppose vq−1 = Yi j , vq = Yik (i.e., eq =
{
Yi j ,Yik

}
). Then Sst +∑r

`=q T̀ is
at leastmin(αi ,α j) if eq ∈ P and is at leastmin(0,1−αi −α j) if eq ∈ N.

Proof. By “backward” induction onq. For the base caseq = r, assume without loss of generality that
vq−1 = Ys j, so thateq = {Ys j,Yst}. If eq ∈ N, thenT1 =−αs so thatT1 +Sst =−αs+min(αs,αt). Since
α satisfies the edge constraints (4.1), it follows that α j + αt ≥ 1 for the bracing edge{ j, t}. Hence,
T1 +Sst ≥ min(0,1−α j −αs). If insteadeq ∈ P, thenT1 = αs+(α j +αt −1) so that

T1 +Sst = [αs+(α j +αt −1)]+(1−αs−αt) = α j .

The base caseq = r follows.
Assume the claim holds foreq and considereq−1 = {Yi j ,Yik} wherevq−2 = Yi j andvq−1 = Yik. If

eq−1 ∈ N, thenTq−1 =−αi . Moreover,eq ∈ P and by induction,

Sst +
r

∑̀
=q

T̀ ≥ min(αi ,αk) .

Sinceα satisfies the edge constraints (4.1), it follows thatα j +αk ≥ 1 for the bracing edge{ j,k}. Hence,

Sst +
r

∑
`=q−1

T̀ ≥ min(0,1−αi −α j) .

If insteadeq−1 ∈ P, thenTq−1 = αi +(α j +αk−1). Moreover,eq ∈ N and by induction,

Sst +
r

∑̀
=q

T̀ ≥ min(0,1−αi −αk) .
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So sinceα j +αk ≥ 1, it follows that

Sst +
r

∑
`=q−1

T̀ ≥ min(αi ,α j) .

The claim follows foreq−1.

Case 3: Both endpoints ofp are positive diagonal

Sincep contains two diagonal vertices,Proposition 4.10implies that there is a cycleC in the subgraph of
G induced by the bracing edges corresponding to the edges inp. Since girth(G)≥ 4R(m), it follows that
C contains a distant pair. But then, as there are two different paths between this pair alongC, Remark 4.8
implies that there are two subpathsp′1 andp′2 in C eachconsisting of 2/γ overloaded edges.

Recall that in subcase 1 of Case 2 where there was one positive diagonal vertex, one such subpath
was used to argue thatS≥ 0 in that subcase. In the current case where there aretwo positive diagonals
and thetwosubpathsp′1 andp′2, the same argument then implies thatS≥ 0 for the current case also.

5 Discussion

As mentioned earlier, the interesting open problems are to extend our techniques to problems other than
VERTEX COVERand to semidefinite relaxations instead of linear relaxations. We also feel that the lower
bound for theLS procedure should extend to more than logn rounds but the argument seems to need
some property other than high girth.

As mentioned in our related work section, since the appearance of the conference version of this
paper, a few other papers [6, 1, 30] have addressed questions introduced here. However, the techniques
in all the above papers do not seem to apply to graphVERTEX COVER. Furthermore, they also do not
apply to a lift-and-project method of Sherali-Adams [28] that was contemporaneous to Lovász-Schrijver.
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[4] * BÉLA BOLLOBÁS: Modern graph theory, volume 184 ofGraduate Texts in Mathematics.
Springer-Verlag, Berlin, 1998.4

[5] * MARIA BONET, TONIANN PITASSI, AND RAN RAZ: Lower bounds for cutting planes proofs
with small coefficients.The Journal of Symbolic Logic, 62(3):708–728, September 1997.1

[6] * JOSHUA BURESH-OPPENHEIM, NICOLA GALESI, SHLOMO HOORY, AVNER MAGEN, AND

TONIANN PITASSI: Rank bounds and integrality gaps for cutting planes procedures. InProceed-
ings: 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, 11–14
October 2003, Cambridge, Massachusetts, pp. 318–327. pub-IEEE, 2003.1, 1, 4, 5

[7] * JOSEPHCHERIYAN AND FEI QIAN : Personal communication, 2005.2
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[20] * JOHAN HÅSTAD: Some optimal inapproximability results.Journal of the ACM, 48(4):798–859,
2001. [JACM:258533.258536]. 1

[21] * DORIT HOCHBAUM: Approximating covering and packing problems: Set cover, vertex cover,
independent set, and related problems. InApproximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997.1

[22] * Dorit Hochbaum, editor.Approximation Algorithms for NP-hard Problems. PWS Publishing
Company, 1997.1
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