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1 Introduction

1.1 The statement of the main result

A Boolean (or 2-way) branching program is a finite directed acyclic graph (which may contain parallel
edges) with a unique source node, so that each non-sink node is labeled by one of the input variables
x0, . . .,xn−1, each non-sink node has outdegree two, each edge is labeled by an element of{0,1} so that
the two outgoing edges of a non-sink node always get different labels, and each sink-node is labeled
by an element of{0,1}. If an input is given we start from the unique source node and go along a path
according to the following rule. If we are at nodev and the label ofv is the variablexi then we leavev on
the unique outgoing edge whose label is the value ofxi . This path will end in a sink node; the label of
the sink-node is the output of the program at the given input, the length of the path is the computational
time at the given output, the maximal length of a path in the graph that we may get from an input this
way is the length (or depth) of the branching program. The number of nodes in the graph is the size of
the branching program.

This model describes a very general way of computing where the computational time measures the
number of accesses to the individual bits of the input and the size measures the number of different
states of the machine performing the computations. We do not measure the computational time needed
to determine the next state of our machine (that is, the next node in the graph along the path). We may
also think about this model as a random access machine whose input registers contain a single input bit,
with a working memory containing log2M bits whereM is the size of the branching program.

Our goal is to give an explicit function which cannot be computed with a Boolean branching program
in linear time if the size of the branching program is 2εn. The function has to assign to each{0,1}-
sequence of lengthn a single{0,1}-value. We identify the set of all{0,1}-sequences of lengthn
with the set of all subsets of{0,1, . . .,n− 1}, that is, our functionf will assign to each subsetX of
{0,1, . . .,n−1} a{0,1}-value. For such a setX let f (X) be the parity of the number of elements of the
set of all pairs〈x,y〉 with the propertyx∈ X, y∈Y, x < y, andx+y∈ X. We will say thatf (X) is the
parity of interior sumsfor the setX, where the expression “interior” refers to the fact that both the terms
in the sum and the sum itself must be inX.

Our main result is that the parity of interior sums for a set ofn elements cannot be computed with a
Boolean branching program in linear time if the size of the branching program is 2εn (seeTheorem 3.4).

1.2 The history of the problem and related results

1.2.1 Boolean and R-way branching programs

One of the main goals of complexity theory is to describe explicitly given functions which cannot be
computed in certain computational models with specified amount of resources. Branching programs
form one of the most general models of computation, e.g. random access machines with memoryM
and running timet can be described by branching programs of size 2M and time (depth)t. Because of
the generality and simplicity of the model and its mentioned close connection to the practical random
access models of computation, finding lower bounds for explicitly given functions in the branching pro-
gram model in general, and with the given values of parameters in particular (linear time and sublinear
memory) was always considered a question of great importance.
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A generalization of the Boolean branching programs is the computational model ofR-way branching
programs. Since most of the results that we use in our proofs were established forR-way branching
programs, we describe briefly its definition. The computation is done in the same way, along a path of a
directed graph as in the Boolean case, with the following differences. A setΓ with R elements is given,
the elements ofΓ are the possible values of the input variables. Each non-sink node has outdegreeR, and
the outgoing edges are labeled by the elementsΓ so that theR outgoing edges haveR different labels.
Each sink node is labeled by an element ofΓ. If an input is given, that is, we assign an element ofΓ to
each of the input variablesx1, . . .,xn, then we follow a path of the graph in the following way. We start
at the unique source node. If we are at nodev and the label of nodev is the variablexi then we leavev
on the unique outgoing edge whose label is the element ofΓ assigned to the variablexi . This path will
end in a sink node. The element ofΓ which is the label of this sink node is the output of theR-way
branching program. The value ofR, in the results most interesting for us, isnc wherec is a constant.
(This corresponds to the random access machines where each register can containclog2n bits.)

1.2.2 Branching programs with many output bits, and the time segmentation method

The computational model ofR-way branching programs was introduced by Borodin and Cook [8], who
proved a time-space trade-off for sortingn integers. This work also introduced a method for proving
lower bounds aboutR-way branching programs in the special case where the number of output bits is
relatively large compared to the time allowed for the computation. Several other lower bounds and time-
space trade-offs of similar nature were given, see e. g. Abrahamson [1, 2], Beame [5], Karchmer [11],
Reisch and Schnitger [12], and Yesha [14]. These lower bound proofs have a common high-level struc-
ture, namely the time is cut into short intervals and we use the fact that during such an interval any
information that we can use about the past must be contained in the limited memory at the beginning
of the interval. In particular if many output bits are provided in a single time interval, then these may
depend only on those input values which are accessed during this time interval and the the content of the
memory at the the beginning of the interval.

1.2.3 Lower bounds for explicit functions and decision problems

Using the same high level proof structure, and other new ideas, Beame, Saks and Jayram1 [6] gave
a lower bound on the computational time for an explicitly given function with a Boolean branching
program of size 2o(n). Namely they proved that there is anε > 0 so that the question whether the
quadratic formσTQσ is zero, (whereσ is the input, a{0,1}-vector of lengthn, andQ is then× n
Sylvester matrix over the field with three elements) cannot be decided with a branching program of
length(1+ ε)n and of size 2o(n). (The proof shows that the theorem holds forε = .0178.) This is the
best previously known lower bound in the direction of our main result. In the same paper they gave a
nonlinear lower bound on the length of anR-way branching program computing an explicitly defined
function, (similar to the function they used in the Boolean case.) More precisely they prove that for
all k there is anrk so that for all sufficiently largen there is an (explicitly given) 0-1 valued function
g(x1, . . .,xn) of n variables such that: (a) each variable is takes its values from a set of sizerk and (b)
there is nork-way and sizenc branching program which computesg(x1, . . .,xn) in depthkn.

1T.S. Jayram, formerly Jayram S. Thathachar
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The author of the present paper proved [4] that the element distinctness problem (where each “ele-
ment” is the value of a variable) cannot be decided with anR-way branching program, forR= clog2n,
in length linear inn if the size of the program is at most 2εn, provided thatc≥ 2. (If the problem is to
find two elements whose Hamming distance is smaller than1

4clog2n then for a similar lower bound on
the length the necessary restriction on the size is only 2εnlog2 n.) These proofs are based on the analysis
of certain combinatorial properties of the input, which are very similar to the combinatorial properties
used in [6]. The high level structure of the proof still follows the time segmentation idea described
earlier. Since the present proof uses some of the technical lemmata of [4], we will give later a more
detailed description of its techniques. At this point we sketch only some of the basic ideas of the proof
in [4]. Since these are also related to the proof methods of [6], this will show the additional ideas that
are needed to make the time segmentation method work when the number of output bits is small.

1.2.4 Lower bounds for binary functions and relations

It is shown in [4] that if a function f can be computed in linear time with the given restrictions on the
size then there are two large disjoint subsets,W1,W2, of the set of the input variables and an inputχ

with the following properties. For eachi = 1,2 we may change the inputχ in many different ways by
changing the values of the variables inWi only, so that the output does not change. Moreover, fori = 1,2
we can select a large set of changesYi so that even if we perform a change fromY1 (on the values of
the variables inW1) and another one fromY2 (on the values of the variables inW2) simultaneously, the
output remains unchanged.

In the case of the element distinctness problem we are able to chose an inputχ which meets these
requirements with the additional property thatχ (which is a list ofn integers) consists of pairwise distinct
integers. Therefore, if our branching program solves the element distinctness program, its output is, say,
1. However we can prove the for a fixedi = 1,2 the inputs that we get fromχ through the changes in
Yi , take more thann2 different values on the set of variablesWi . Therefore there will be an integerx so
that for bothi = 1,2, x will be a value of a variable fromWi if we perform suitable change onχ fromYi .
Consequently performing both suitable changes simultaneously we get an input which containsx twice
and still the unchanged output is 1. This contradicts the assumption that the program solves the element
distinctness problem.

Similar ideas are used for the other relations, or functions in the mentioned lower bounds. In each
case we need a functionF(x,y) or a relationR(x,y) with two variables so that if we can separately
changex andy in many different ways then among these changes there will be two so that performing
them simultaneously we are able to change the value ofF(x,y) or R(x,y). If R is the equality predicate
then, as we have seen, this can be guaranteed if both sets of changes produces at leastn

2 different input
values. In the case of the Hamming distance problem described above the situation is even better since
n
2 can be replaced byn1−ε ′ for some small constantε ′ > 0 (see [4]). (This is the reason that the proof of
the lower bound for the Hamming distance problem is much simpler and gives a stronger result than the
proof for the element distinctness problem.)
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1.2.5 Quadratic forms and rigidity

The binary functionF(x,y) can be also defined by a quadratic formxTBy. Assume that, as before,x andy
independently run over large sets and now we want to guarantee that thexTBy is not constant. Motivated
by similar considerations, quadratic forms were studied by Borodin, Razborov, and Smolensky [9],
Jayram [13], and Beame, Saks, and Thatachar [6]. The result in this direction that we will use in
our paper is the following. (This was proved in more general forms in [9], [13], and [6], and also
follows from the results of [10].) Suppose that the rank of the matrixB is r andx resp. y are taking
values independently fromm1 resp. m2 dimensional subspaces of anm dimensional vectorspace. If
m1 +m2 + r > 2m then the quadratic formxTBy is not constant.

As we described earlier, in the lower bound proofs we can usually guarantee only thatx andy can
take values independently only in some limited sense, namely we can apply independent changes to two
disjoint sets of variables. In [6] the mentioned property of the quadratic forms is applied in the following
way. The lower bound is proved for a function of the formxTAywhereA is a suitably chosen, explicitly
given, matrix over a finite field. This matrix has the property that eachδn× δn submatrix which does
not contain elements from the main diagonal is of rank at leastδ 2n whereδ > 0 is a small constant.
(This may be considered as a rigidity property of the matrixA.) The input variables of the branching
program take values from the fieldF . We pick two large sets of independent changes on two disjoint
sets of variables of at leastδn elements. The submatrix ofA formed from the corresponding rows and
columns will be the matrixB in the mentioned property of quadratic forms. This way it is possible to
guarantee that, roughly speaking, under independent changes on these sets of variables, the quadratic
form cannot remain constant, which makes the lower bound proof possible.

In the present paper we will follow the same strategy for our proof with the following improvements.
We use two-way branching programs with a single output bit which creates three new problems. (1) It is
more difficult to prove the existence of the two disjoint sets of variables which admit many independent
changes that leave the output of the branching program unchanged. For this we use the machinery
worked out in [4]. (2) The explicitly given matrix of [6] is a Sylvester matrix over the fieldF and so the
size of the field must be at leastn. We need something similar forF2, the field with two elements. We
do not give an explicit construction for such a matrix, but a random construction which depends only
on a linear number of random bits which can be included in the input. (3) it is not enough for us if the
rank of the submatrices of sizesδn× δn areδ 2n, we need much larger ranks; what we prove will be
δ | logδ |−2n.

1.2.6 Summary of the history of the problem

Summarizing the historical developments about the lower bound techniques for branching programs, we
can say that there were two parallel developments. The first is the time segmentation method which later
was supplemented by the technique of considering changes of the values of variables on two disjoint
sets: [8],[6],[4]. The second is the development of the algebraic techniques about quadratic forms based
on matrices with rigidity properties, providing explicitly defined functions which were suitable for the
lower bound proof techniques mentioned in the first direction of developments: [9],[13],[6]. The present
paper uses the techniques of both of these directions.
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M IKL ÓS AJTAI

1.3 Subsequent developments

A preliminary version of this paper was published in [3] containing all of the essential elements of the
proofs presented here. Since then, the main result of this paper was further improved by Beame, Saks,
Sun, and Vee in [7] by making the time/space lower bounds sharper and generalizing the theorem for
the case of probabilistic branching programs. Their proofs use the results and techniques of the present
paper (together with methods of different nature).

2 Overview of the proof

2.1 A lower bound for a nonexplicit function

Our proof in the present paper uses a technical lemma of the element distinctness result. As we have
mentioned already in the introduction, it is shown in [4] that if a function f can be computed in linear
time with the given restrictions on the size then there are two large disjoint subsets,W1,W2, of the set of
the input variables and an inputχ so that for eachi = 1,2 we may change the inputχ in many different
ways by changing only the values of the variables inWi so that the output does not change; moreover
these changes can be performed simultaneously onW1 andW2 so that the output still does not change.
The ratio between the sizes of the setsWi and the logarithm of the number of changes has a crucial
importance in the proofs of the present paper. (A precise statement of this result is given inLemma 3.5
below.)

We use this result to show that a quadratic form (which isnot given explicitly) cannot be computed
in linear time. The algebraic part of this proof (Lemma 3.11) is a theorem proved by Borodin, Razborov,
and Smolensky [9] (and in more general forms by Jayram [13] and Beame, Saks, and Jayram [6]). We
reduce the problem of giving a quadratic form with the required properties to a question about the ranks
of the submatrices (or minors) of the matrix generating the quadratic form in a similar way as is done
in [6]. In both cases the goal is to get a matrixA so that eachbδnc by bδnc submatrix of the matrixA
has rank at leastψ(δ )n, for eachδ > 0, provided thatn is sufficiently large with respect toδ , where
the functionψ should be as large as possible. The Sylvester matrices used in [6] are explicitly given
examples of such matrices withψ(δ ) = δ 2, provided that we consider only submatrices that do not
contain any elements of the main diagonal. (This restriction does not affect the applicability of the
matrix to the lower bound proof.)

2.2 Decreasing the randomness needed

Definition 2.1. We will call ann×n matrixA= (ai, j) aHankelmatrix if ∀i, j,k, l ∈ {0,1, . . .,n−1}, i +
j = k+ l impliesai, j = ak,l . In other wordsA is a Hankel matrix iff it is constant across minor diagonals.

Remark 2.2. A Hankel matrix is determined by only 2n−1 suitably chosen entries, e.g. by entries of
the first row and last column. If a matrix is constant along all diagonals it is called aToeplitzmatrix.
Reversing the ordering of the rows creates a one-to-one correspondence between Toeplitz matrices and
Hankel matrices. Therefore all of our results concerning the ranks of Hankel matrices remain valid for
Toeplitz matrices as well.
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We show that ifA is a randomn by n Hankel matrix over the field with 2 elements, with uniform
distribution on the set of all such matrices, then with high probability the described property about the
ranks of the submatrices holds withψ(δ ) = cδ | logδ |−2 for an absolute constantc > 0. As a conse-
quence, using also the mentioned lemma from [4], we are able to show that if̃A is the matrix that we
get fromA by replacing each entry in the main diagonal and above by 0, then the quadratic form〈Ãx,x〉,
wherex is the input vector, cannot be computed with a branching program of linear length and size at
most 2εn.

2.3 From a non-explicit function to an explicit function

Of course this is not an explicitly given function; we only know that the lower bound holds for almost all
matrices. However, we got the matrix by randomizing only 2n−1 bits. Therefore if we include these bits
in the input, then we get an explicitly given problem (with 3n−1 input variables, where the described
tradeoff holds between the length and size of any branching program computing the quadratic form).
In other words, ifA(y), y = 〈y0, . . .,y2n−2〉 denotes the Hankel matrix withai, j = yi+ j , then〈Ã(y)x,x〉
cannot be computed in the given length and size from the input〈x,y〉.

2.4 Obtaining a lower bound for the parity of interior sums problem

Assume now thatA= (ai, j) is a fixed Hankel matrix so that〈Ãx,x〉 cannot be computed with a branching
program with the given restrictions. Suppose thatx = 〈x0, . . .,xn−1〉 andX = {i | xi = 1}, and

D = {i + j | ai, j = 1, i, j ∈ {0, . . .,n−1}} .

It is easy to see that〈Ãx,x〉 is the parity of the number of all pairs〈i, j〉, i ∈ X, j ∈ X with the property
i < j andi + j ∈ D.

This will already imply that if two subsets,X,Y, of the set{1,2, ...,2n} are given, then the problem
of computing the parity of the number of elements of the set of all pairs〈i, j〉 with the propertyi ∈ X,
j ∈ X, i < j, i + j ∈ Y cannot be solved by a branching program of linear length and of size at most
2εn. (The setD defined above will play the role ofY.) It will not be difficult to make a single set from
the two setsX,Y, by taking into account the sizes of their elements, and so we will get that the task of
computing, given as input anX ⊆ {1,2...,n}, the parity of the number of elements of the set of all pairs
〈i, j〉 with the propertyi ∈ X, j ∈ X, i < j, i + j ∈ X cannot be accomplished by a branching program of
linear length and of size at most 2εn.

Finally we note that our results about random Hankel matrices remain true over any field with ap-
propriate modifications. (See the remarks afterLemma 4.5, Lemma 4.7andLemma 4.9. See also the
comment about the applicability of these modified versions to generalizations ofTheorem 3.4in the
proof ofLemma 3.11.)
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3 The reduction of the lower bound to a problem about Hankel matrices

3.1 The statement ofTheorem 3.4

In this section we reduce the problem of giving a lower bound for the time needed to solve the problem
described in the introduction to the existence of a matrixA which can be constructed fromn bits with
the property that each large submatrix ofA has also relatively large rank.

Definition 3.1. If X,Y are sets then Func(X,Y) will denote the set of all functions, defined onX, taking
values inY.

A branching program as we will define below will be what is usually called a (deterministic) Boolean
or 2-way branching program indicating that the input variables take their values from a set of size 2.

Definition 3.2. A branching programB with n input variablesx0, . . .,xn−1 is a five tuple

〈G,start,sink,var,val〉 ,

with the following properties

(a). G is a finite directed acyclic graph, which may contain parallel edges

(b). start is the unique source node ofG,

(c). var is a function defined on the non-sink nodes ofG with values in the set{x0, . . .,xn−1} of
variables,

(d). out is a function defined on the set of sink nodes ofG with values in{0,1},

(e). val is a function defined on the set of edges with values in{0,1},

(f). each non-sink node has out-degree 2, and the functionval takes different values on the two
outgoing edges.

An input for the branching programB is a{0,1}-assignment of the variablesxi . (Instead of such an
assignment we usually will think about an input as a{0,1}-valued functionη defined on{0,1, . . .,n−1}
whereη(i) is the value ofxi .) If an input is given, then starting fromstart we go along a path in the
graph in the following way. When we are at a non-sink nodev then we look at the value of the variable
var(v) and leave the node along the edgee where the value ofval(e) is the same as the value of this
variable. Since the graph is acyclic and finite, this way we will reach a sink-nodew. out(w) will be the
output of the branching program at the given input. The number of edges along the path determined this
way by the input is the computational time of the branching program at the given input. The maximal
computational time for the set of all inputs (that is, the maximal length of all paths arising from an input
in the given way) is thelengthof the branching program. Thesizeof the branching program is the
number of nodes ofG.

Definition 3.3. Assume thatX is a subset of{0, . . .,n−1}. N+(X) will denote the number of all pairs
x,y∈ X, x < y so thatx+y∈ X.
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The following theorem is the main result of the present paper. It states that the parity of the interior
sums of a subset of 0,1, . . .,n− 1 cannot be determined by a branching program of size 2εn in linear
time.

Theorem 3.4. For all positive integers k, ifε > 0 is sufficiently small and n is sufficiently large then
there is no branching programB with n inputs, of length at most kn and of size at most2εn, which for
all inputsη computes the parity of N+(Xη) where Xη = {i ∈ {0,1, . . .,n−1} | η(i) = 1}}

3.2 Results from earlier works

In the proof we will use the following lemma,Lemma 3.5, which is a consequence ofLemma A1proved
in [4] (called Lemma 9 in that paper). The proof ofLemma 3.5from Lemma A1is almost identical to
the proof of Theorem 4 from Lemma 9 in [4] and does not require any new ideas. We describe this proof
(of Lemma 3.5from Lemma A1) in the last section.

The remaining part of the paper, starting withLemma 3.7, is self-contained. We begin with the
definitions needed to understand the statement ofLemma 3.5.

Definitions.

1. An input (of a branching problem withn input variables) is a functionχ defined on{0,1, . . .,n−1}
with values in{0,1}. A partial input is a functionη defined on a subset of{0,1, . . .,n−1} with
values in{0,1}.

2. Assume thatχ is an input andη is a partial input. Thenχ oη will denote the input which is
identical toη ondomain(η) and identical toχ ondomain(χ)\domain(η).

3. If δ ∈ {0,1} andB is a branching program, thenB−1(δ ) will denote the set of all inputsη so that
the output ofB at inputη is δ .

Lemma 3.5. For all positive integers k, ifσ1 > 0 is sufficiently small with respect to k,σ2 > 0 is
sufficiently small with respect toσ1, ε > 0 is sufficiently small with respect toσ2, n is sufficiently large
with respect toε, B is a branching program with n inputs of length at most kn and of size at most2εn,
and δ ∈ {0,1} so that|B−1(δ )| ≥ 2n−1, then there exist aχ ∈ B−1(δ ), λ ∈ (σ2,σ1), µ ∈ (σ2,σ1),
Wi ⊆ {0,1, . . .,n−1}, i = 1,2, and sets of partial inputs Yi , i = 1,2 defined on Wi satisfying the following
conditions:

(1). for all i ∈W1 and j ∈W2 we havei < j,

(2). |W1|= |W2|= µn,

(3). |Y1|, |Y2| ≥ 2µn−λn,

(4). µ1+ 1
100k ≥ 2λ , and

(5). for all η1 ∈Y1, η2 ∈Y2, we have(χ oη1) oη2 ∈B−1(δ ).
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3.3 Branching programs and matrix rigidity

Definition 3.6. Assume thatA is ann by n matrix over the fieldF and f is a real-valued function defined
on (0,1]. We say that the matrixA is f -rigid if for eachq = 1, . . .,n and for eachq by q submatrixB of
A we have that the rank ofB is at leastf (q

n)n.

The proof ofTheorem 3.4is based onLemma 3.7andLemma 3.9described below.

Lemma 3.7. There is aδ > 0 so that, for allγ > 0, if the function g(x) is defined by g(x) = δx| logx|−2

if x ∈ (γ, 1
2) and g(x) = 0 otherwise, then for each sufficiently large positive integer n there is an n by n

Hankel matrix A over F2, so that A is g-rigid.

Remark 3.8. It would be much easier to prove the lemma withg(x) = δ 2x, though this is not enough
for the present application.

We will prove Lemma 3.7in the next section; more precisely, we will prove (Theorem 4.2) that a
random matrixA taken with uniform distribution on the set of all Hankel matrices meets the requirements
of the Lemma with high probability.

Definitions.

1. Assume thatη is a function with values in{0,1} defined on{0,1, . . .,n−1}. uη will denote the
n-dimensional vector〈η(0), . . .,η(n−1)〉

2. The inner product of then-dimensional vectorsu,v will be denoted byu·v.

3. Assume thatA = {ai, j}n−1
i=0, j=0 is ann by n matrix. Ã will denote then by n matrix that we get

from A by keeping every entry ofA below the main diagonal and replacing all other entries by 0.
In other wordsÃ= {bi, j}n−1

i=0, j=0, wherebi, j = ai, j for all i > j andbi, j = 0 for all i ≤ j, i = 1, . . .,n,
j = 1, . . .,n.

Lemma 3.9. For all positive integers k, ifσ1 > 0 is sufficiently small with respect to k,σ2 > 0 is
sufficiently small with respect toσ1, ε > 0 is sufficiently small with respect toσ2, and n is sufficiently
large with respect toε, then the following holds. Assume that the function f is defined on(0,1] by
f (x) = x1+ 1

100k if x ∈ (σ1,σ2) and f(x) = 0 otherwise. If A is an f -rigid n by n matrix A over F2 then
there is no branching programB with n inputs of length at most kn and of size at most2εn which, for all
inputsη , computes̃Auη ·uη .

Remark 3.10. We use the matrix̃A instead ofA in the expressioñAuη · uη at the conclusion of the
lemma, since over a field of characteristic 2 and for a symmetric matrixA, almost all of the terms of
Auη ·uη will have 0 coefficients.

Proof ofLemma 3.9. Assume that, contrary to our statement, there is a branching programB with the
given properties which computes̃Auη ·uη . We applyLemma 3.5with the given values ofk,σ1.σ2,ε,n
and with the givenB. According toLemma 3.5there existδ ∈ {0,1}, χ ∈ B−1(δ ), λ ,µ ∈ (σ2,σ1),
andWi ,Yi , i = 1,2 with the properties listed inLemma 3.5. Let v = 〈v0, . . .,vn−1〉 be ann dimensional
vector overF2 defined in the following way. For alli /∈ W1∪W2 let vi = χ(i) and for all i ∈ W1∪W2

THEORY OFCOMPUTING, Volume 1 (2005), pp. 149–176 158



A NON-LINEAR TIME LOWER BOUND FORBOOLEAN BRANCHING PROGRAMS

let vi = 0. Recall that fori = 1,2, Yi is a set of functions fromWi to {0,1}. We define a vectorw(ξ ) =
〈w(ξ )

0 , . . .,w(ξ )
n−1〉 for all ξ in Y1∪Y2. If i ∈ domain(ξ ) thenw(ξ )

i = ξ (i), if i /∈ domain(ξ ) thenw(ξ )
i = 0.

Let gi be the following function defined onYi : for all ξ ∈Yi , gi(ξ ) = Ã(v+w(ξ )) · (v+w(ξ )). Since the
functionsgi take at most two different values there areY′

i ⊆Yi so that|Y′
i | ≥ 1

2|Yi | andgi is constant on
Y′

i for i = 1,2. Assume now thatξ1 ∈Y′
1, ξ2 ∈Y′

2 and letη = (χ o ξ1) o ξ2. By Lemma 3.5, η ∈ H and
therefore

Ãuχ ·uχ = Ãuη ·uη = Ã(v+w(ξ1) +w(ξ2)) · (v+w(ξ1) +w(ξ2))

=−Ãv·v+g1(ξ1)+g2(ξ2)+ Ãw(ξ1) ·w(ξ2) + Ãw(ξ2) ·w(ξ1) .

Ãuχ ·uχ andÃv·v do not depend on the choices ofξ1,ξ2. By the definition ofY′
1 andY′

2, g1(ξ1)+g2(ξ2)
is constant onY′

1×Y′
2. These facts imply that̃Aw(ξ1) ·w(ξ2) + Ãw(ξ2) ·w(ξ1), as a function ofξ1,ξ2, is also

constant onY′
1×Y′

2. Condition (1)and the definition of̃A implies thatÃw(ξ2) ·w(ξ1) is identically 0 on
Y′

1×Y′
2; thereforeÃw(ξ1) ·w(ξ2) is constant onY′

1×Y′
2. LetV0 be the vectorspace allF2-valued functions

defined on{0, . . .,n−1}, and letVi , i = 1,2, be the subspace of functions that vanish outsideWi . The
dimension ofVi is µn. We may assume thatYi ,Y′

i ⊆ Vi . Let ι1 be the natural embedding ofV1 into V0

and letπ2 be the orthogonal projection ofV0 ontoV2. B will be the linear map ofV1 into V2 defined by
Bx= π2Ãι1x. For allξ1 ∈V1, ξ2 ∈V2 we haveÃw(ξ1) ·w(ξ2) = Bξ1 ·ξ2. If we fix the bases in bothV1 and
V2 which consist of those functions which take the value 1 at exactly one point and 0 everywhere else,
then the matrix ofB is a submatrix of̃A consisting of those entries whose column numbers are inW1 and
row numbers are inW2. By Condition (1)this submatrix ofÃ is identical to the corresponding submatrix
of A. Therefore by thef -rigidity of A, the rank ofB is at leastµ1+ 1

100k n. We applyLemma 3.11(below)
with V1, V2, m→ µn, X →Y′

1, Y →Y′
2 andB. Condition (3)implies that

|Y′
i | ≥

1
2
|Yi | ≥ 2µn−λn−1 .

Therefore, according toLemma 3.11, the fact thatBx· y is constant onγ1(Y1)× γ2(Y2) implies that
2(µn−λn)+ µ1+ 1

100k n≤ 2µn. This is however impossible since, byCondition (4), µ1+ 1
100k > 2λ .

The following lemma, in more general forms, is proved in [9], [13], [6], and also follows from the
results of [10]. To make the paper more self contained we provide a proof.

Lemma 3.11. Assume that V1, V2 are m-dimensional vectorspaces over the field F2, X ⊆ V1,Y ⊆ V2,
|X| ≥ 2m1, |Y| ≥ 2m2 and B is a linear map of V1 into V2 so that the rank of B is at least r. If m1+m2+ r >
2m then the function Bx·y, x∈ X, y∈Y is not constant on X×Y.

Proof ofLemma 3.11. Let x0 be an arbitrary but fixed element ofX and letX′ = {x−x0 | x∈X}. Clearly
|X| = |X′| and if Bx · y is constant onX ×Y then Bx · y is identically 0 onX′ ×Y. Therefore it is
enough to prove that the assumptions of the lemma imply thatBx· y is not identically 0 onX ×Y.
Assume that, contrary to our assertion, it is identically 0. LetH be the subspace inV1 generated by
X andG be the subspace inV2 generated byY. We haveBH ·G = 0, that is, the subspacesBH and
G are orthogonal. Therefore dim(BH) + dim(G) ≤ m, where dim(W) denotes the dimension of the
subspaceW. Since the rank ofB is at leastr we have that dim(BH) ≥ dim(H)− (m− r). We have
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dim(H)−(m−r)+dim(G)≤m. The lower bound on the sizes of the setsX,Y imply the following lower
bound on the dimensions of the subspaces generated by them: dim(H)≥m1, dim(G)≥m2. This simply
follows from the fact that ad-dimensional subspace has 2d elements. We havem1− (m− r)+m2 ≤ m,
that is,m1 +m2− r ≤ 2m in contradiction to our assumption.

Remark 3.12. The lower bounds on dim(H) and dim(G) remain true even if the field has characteristic
different from 2, but we assume that the elements ofX andY have only{0,1} coefficients in a suitably
chosen basis ofV1 andV2. See Lemma 7 of [13]. This is important for the generalization ofTheorem 3.4
for fields with other characteristics.

3.4 The proof of the main result

Proof ofTheorem 3.4. Assume that, contrary to our assertion, there is a branching programB with the
given parameters which computes the parity ofN+(X). Letm= b n

10c. We applyLemma 3.9with n→m,
k→ ck, wherec is a sufficiently large absolute constant andε → ε

2. Assume thatσ1, σ2 are picked with
the properties described in the lemma.

Let g be the function defined inLemma 3.7. Applying Lemma 3.7with n→ m, γ → σ2 we get that
there is anm by m g-rigid matrix A = (ai, j) overF2. If σ1 is sufficiently small with respect toδ , thenA
will be f -rigid as well. Therefore byLemma 3.9there is no branching program of size at most 2

ε

2n which
computesuζ Ã ·uζ in time ckn for all ζ , whereζ is anF2-valued function defined on{0,1, . . .,m−1}.
Let D = {i + j | ai, j = 1} and

Xζ = {i ∈ {0,1, . . .,m−1} | ζ (i) = 1} .

For any pair of sets of integersX,Z let N+(X,Z) be the number of pairsx,y, x < y so thatx∈ X, y∈ X
andx+y∈ Z. The statement ofLemma 3.9in our case is that the parity ofN+(Xζ ,D) cannot be decided
by a branching program with the given restrictions on its parameters. We show that this problem can be
reduced to the problem of determining the parity ofN+(Xη) for a suitably chosenη ∈ Func(n,2) in a
way which can be implemented by a linear-time branching program. Therefore our indirect hypothesis
will contradict toLemma 3.9. η is defined in the following way.

We define first two setsU1,U2. U1 = 2m+ Xζ , U2 = 4m+ D. Let η be the unique element of
Func({0,1, . . .,n− 1},{0,1}) so thatXη = U1∪U2. Clearly, if x,y ∈ Xζ , x < y, andx+ y ∈ D then
2m+ x ∈ Xη ,2m+ y ∈ Xη , 2m+ x < 2m+ y, and(2m+ x)+ (2m+ y) ∈ Xη . Conversely, assume that
z,w∈ Xη , z< w andz+w∈ Xη . It is easy to see that this impliesz,w∈ {2m, . . .,3m−1} and therefore
z−2m,w−2m∈ Xζ , z−2m< w−2m, and(z−2m)+w(−2m) ∈ Xζ . ThereforeN+(Xζ ,D) = N+(Xη).
We claim that each value ofη can be computed in constant time by a branching program, and to do
this the size of our program must be increased only by a factor of two since the extra memory needed
for this step is only one bit. Indeed, assume that we want to determine the value ofη(i) for some
i ∈ {0,1, . . . ,n−1}. First the program decides whetheri ∈U1 by checking whetherζ (i −2m) = 1. If
not, thenη(i) = 0. If ζ (i−2m) = 1, then it has to decide whetheri ∈U2. SinceD is part of the input
this can be decided by checking whetheri −4m∈ D. If the anser is no thenη(i) = 0, if the answer is
yes thenη(i) = 1. Therefore we have reduced the problem of determining the parity ofN+(Xζ ,D) to
the problem of determining the parity ofN+(Xη).
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4 Random Hankel matrices

4.1 The statement of the result

In this section we show that with a positive probability all large submatrices of a random Hankel matrix
have relatively large ranks.

Definition 4.1. The field withq elements will be denoted byFq.

Theorem 4.2. There exists a c1 > 0 so that, for all c2 > 0, if n is sufficiently large then the following
holds: Assume that A= {ai, j}, i = 0, . . .,n−1, j = 0, . . .,n−1 is a random n by n Hankel matrix over
F2, taken with uniform distribution on the set of all such matrices. Then with a probability greater than
1
2, A has the following property:

(6). SupposeS= {s0, . . .,sq−1}, T = {t0, . . ., tq−1} are subsets of{0, . . .,n−1} with q elements, where
c2n< q< n

2, andBS,T = (asi ,t j ), i = 0, . . .,q−1, j = 0, . . .,q−1 is the submatrix ofA consisting of those
entries whose row numbers are inS and column numbers are inT. Then the rank ofBS,T is at least
c1| log(q

n)|−2q.

4.2 Sketch of the proof

4.2.1 A natural but unsuccessful attempt

The most natural way to prove the statement of the theorem would be the following. Assume that
the setsS,T are fixed. We give an upper boundM on the probabilitypS,T of the event that, for the
randomization ofA, the matrixBS,T defined for the fixed setsSandT has rank smaller thanc1| log(q

n)|−2.
If M multiplied by the number of choices for the pair〈S,T〉 is smaller than1

2 then the assertion of the
theorem clearly holds.

Unfortunately a proof of this type cannot work. Indeed ifq = cn then the number of pairs〈S,T〉 is
about 22c(log 1

c )n. On the other hand for a fixed pairS,T, in the worst case, the number of minor diagonals
of A intersected byS×T can be as small as 2cn−1. Each of the choices of 0s and 1s inA on these
diagonals are equally probable so the probability that we get rank smaller thanc1| log(q

n)|−2 is at least
2−2cn+1. (It is not 0 since, e.g. the 0 matrix has such a small rank.) Since the absolute value of the
exponent in the number of pairs is greater by a factor of| log 1

c | than in the upper boundM, the product
cannot be smaller than12 if c is a small constant.

4.2.2 Reducing the number of relevant submatrices

The main problem with the argument described above was that the number of pairs〈S,T〉 is too large
compared to the number of relevant minor diagonals. LetS be the set of these pairs, that is, the set of
all pairs〈S,T〉 so thatS,T ⊆ {0,1, . . .,n−1} and|S|= |T|= q. We will be able to avoid the mentioned
difficulty in the following way. Instead of working with the elements ofS, we will consider a smaller set
S′ consisting of pairs〈S′,T ′〉 so that|S′| ≤ q, |T ′| ≤ q and with the property that for all〈S,T〉 ∈ S there
is a〈S′,T ′〉 ∈ S′ so thatS′ ⊆ SandT ′ ⊆ T. (We will refer to this property by saying thatS′ is densein
S.)
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It is enough to show that for all〈S′,T ′〉 ∈ S′ the rank ofBS′,T ′ is at leastc1| log(q
n)|−2q. Indeed,

sinceS′ is dense inS, each matrixBS,T with 〈S,T〉 ∈ S has a submatrixBS′,T ′ with 〈S′,T ′〉 ∈ S and so
rank(BS,T) ≥ rank(BS′,T ′)≥ c1| log(q

n)|−2q.
We will define the setS′ by constructing a functionF defined onS so that for each〈S,T〉 ∈ S,

F(〈S,T〉) = 〈S′,T ′〉 with S′ ⊆ S, T ′ ⊆ T. Clearly if such anF is given andS′ = {F(〈S,T〉) | 〈S,T〉 ∈ S},
thenS′ is dense inS. We also have to make sure that|S′| is small and that we are able to give a good
upper bound, for each fixed〈S′,T ′〉 ∈ S′, on the probability that the rank of the matrixBS′,T ′ is smaller
thanc1| log(q

n)|−2.

4.2.3 The rank of an enlarged submatrix

First we describe our method of estimating the probability that the rank of a submatrixBS,T of A is
small for a fixed pair〈S,T〉. This will be based on the following observation. Assume that a pair〈S,T〉,
S,T ⊆ {0,1, . . .,n−1}, is fixed ands> max S= maxx∈Sx, t > max T, S1 = S∪{s}, andT1 = T ∪{t}.
Then with probability at least12 for the randomization ofA we have that the rank ofBS1,T1 is strictly
greater than the rank ofBS,T . We will prove this statement in the following way. For allk= 0,1, . . .,n−1,
let Dk be the minor diagonal ofA containing the entriesai, j with i + j = k. We show that if the values
of the entries ofA are fixed on all minor diagonalsDk with k < s+ t, then out of the two possible
definitions ofA on the minor diagonalDs+t , at least one will yield a matrixBS1,T1 with the property that
rank(BS1,T1) > rank(BS,T). The proof of this fact is a simple argument in linear algebra as described in
the proof ofLemma 4.5.

Lemma 4.5itself is a slight generalization of this assertion, stating that if we add not a single new
element toSand another single element toT, but a set of new elements̃S to Sso that maxS< min S̃,
and a set of new elements̃T to T so that maxT < min T̃ then the resulting enlarged setsS1 = S∪ S̃,
T1 = T ∪ T̃ have the following property. If the values of the entries ofA are fixed on all minor diagonals
Dk with k≤max S+max T, then for the randomization ofA on the remaining minor diagonals we have
that, with probability at least 1− 2−|S̃+T̃|, rank(BS1,T1) > rank(BS,T). Indeed, there are|S̃+ T̃| minor
diagonals which contain an entryas,t of A with s∈ S̃ and t ∈ T̃. According to the already described
special case the randomization of the values of the entries on each of these diagonals will lead to the
required increase of the rank with a probability of at least1

2. Since these randomizations are independent

we get that the rank increases with probability at least 1−2−|S̃+T̃|.

4.2.4 Partitioning the rows and columns

What we have done so far is only good for estimating the probability of rank(BS1,T1) > rank(BS,T) for
some pairs〈S,T〉, 〈S1,T1〉whereS⊆S1, T ⊆T1. To get a lower bound on the probability of rank(BS,T) >
R for some integerR, we will partition S into subsetsS1, . . .,Sl and T into subsetsT1, . . .,Tl so that
max Si < min Si+1 and maxTi < min Ti+1 for all i = 1, . . ., l −1. If rank(BS,T) ≤ R= l − r then there
must be at leastr distinct elementsi of {1, . . ., l} with the property rank(BΓi ,Λi ) = rank(BΓi+1,Λi+1), where
Γ j = S1∪ . . .∪Sj andΛ j = T1∪ . . .∪Tj for j = 1, . . ., l . We will denote byE the set of all integers
i ∈ {1, . . ., l} with this property. Then
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(7). the probability of the event that we get equalities for every element of this set is at most

2−∑i∈E(|Si+Ti |) .

If we add these upper bounds for all of the possible choices forE, that is for all subsets of{1, . . ., l}
with r elements, then we get an upper bound on the probability of rank(BS,T)≤ l − r. (This upper bound
is formulated in a slightly more general form inLemma 4.7.) We will use this estimate for each fixed
choice for〈S,T〉 ∈ S′ with suitable choices of the partitionsS1, . . .,Sl , T1, . . .,Tl .

4.2.5 The choice of the partitions and the submatrices

Our remaining task is to define the functionF so that

S′ = {F(〈X1,X2〉) | 〈X1,X2〉 ∈ S}

is dense inS, select a pair of partitions for each〈S,T〉 ∈ S′, and then add the corresponding upper
bounds (withR= c1q| log(q

n)|−2) for each〈S,T〉 ∈ S′. The upper bounds will not depend on the choice
of 〈S,T〉 ∈ S′, so we will have to prove that the common upper bound multiplied by|S′| is at most12.

When we defineF(〈X1,X2〉) for some〈X1,X2〉 ∈ S, we will have already in mind the task of choosing
suitable partitions ofSandT, where〈S,T〉 = F(X1,X2). We give here a somewhat simplified definition
of F, the final definition will be provided in the proof ofLemma 4.9. Let t be a positive integer which
is a large constant. We assume now, for the sake of simplicity, thatt2|q. For j = 1,2 we partition

Xj into q
t2 subsetsK( j)

1 , . . .,K( j)
q/t2 each containing exactlyt2 elements so that maxK( j)

i < min K( j)
i+1 for

i = 1, . . ., q
t2 −1. Clearly these properties uniquely determine both partitions.

For each fixedi = 1, . . .,q/t2 we pick setsJ( j)
i ⊆ K( j)

i , j = 1,2, with exactlyt elements so that

|J(1)
i + J(2)

i | is maximal. Since the setsJ( j)
i havet elements this maximum is at mostt2. We will show

(Lemma 4.3) that, since we pick the setsJ( j)
i from sets of sizet2, this upper bound can be can be attained,

and so|J(1)
i +J(2)

i |= t2 for all i = 1,2, . . ., q
t2 . Let

Z j =
q/t2⋃
i=1

J( j)
i

for j = 1,2. Now we defineF by F({X1,X2}) = 〈Z1,Z2〉. For j = 1,2 we will use the partition

J( j)
1 , . . .,J( j)

q/t2 of the setZ j when estimatingprob(rank(BZ1,Z2)≤ c1| log(q
n)|−2q). The inequality ofCon-

dition (7) gives a good upper bound which can be easily evaluated (as a function ofq, t andn) since in
the exponents the value of the expression−(|J(1)

i +J(2)
i |) is t2, and the number of exceptional setsE can

be also estimated without any problems. Finally the number of possible pairs〈Z1,Z2〉 is at most
( n

q/t2

)2
.

These estimates lead to the conclusion of the theorem.

4.2.6 Why did it work?

From the description of the necessary estimates at the end of the last paragraph it is not clear what
made it possible to get a good enough upper bound on the probabilitiesprob(rank(BZ1,Z2) ≤ R), where
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R= c1| log(q
n)|−2q, compared to the number of pairs〈Z1,Z2〉. It is true that the number of pairs became

smaller, since the sizes of the setsZ j are smaller by a factor oft then the sizes of the setsXj , but for
smaller sets the upper bounds on the probabilities can be larger. Why is it that we gained more on the
number of sets then lost on the upper bounds on the probabilities?

The answer is that the upper bound did not depend on the sizes of the setsZi but depended only on
the common size of the setsJ(1)

i +J(2)
i which wast2. The corresponding quantity for the pair〈X1,X2〉 is

|K(1)
i +K(2)

i |. Since we do not have any assumption about the setsK(1)
i ,K(2)

i other than that their sizes are

t2, in the worst case|K(1)
i +K(2)

i | can be as small as 2t2. Therefore, although the sizes of the sets went
down by a factor oft, the critical quantity in the upper bounds remained essentially unchanged. This
guaranteed that we won more on decreasing the number of pairs then we lost on increasing the upper
bound of the probabilities. To formulate the same phenomenon in the language of minor diagonals we
may say that: although the ratio of the sizes of the setsXj andZ j is t, if we consider the number of

minor diagonals intersecting the subsetsK(1)
i ×K(2)

i resp.J(1)
i ×J(2)

i the ratio, at least in certain cases, is
at most 2.

This completes the sketch of the proof of the theorem. In the remaining part of the section we gave
a detailed proof of the mentioned lemmata and the theorem.

4.3 The proof ofTheorem 4.2

Lemma 4.3. Assume that t is a positive integer and U,V are sets of integers with|U | = |V| = t2. Then
there are U′ ⊆U, V′ ⊆V, so that|U ′|= |V ′|= t and|U ′+V ′|= t2.

Remark 4.4. As the proof will show, the lemma remains true if we replace|U |= |V|= t2 by the weaker
assumption|U |= |V|= t2− t +1.

Proof ofLemma 4.3. We have to select the subsetsU ′,V ′ of U andV so that each has exactlyt elements
and all of thet2 sumsu+ v, u ∈ U ′, v ∈ V ′ are different. Suppose that this does not hold for some
selection ofU ′,V ′, that isu+v = ū+ v̄ for some suitably chosenu, ū∈U ′, v, v̄∈V ′. This would imply
thatu− ū= v̄−v and so the sets(U ′−U ′)+ and(V ′−V ′)+ are not disjoint, where for a set of integersX,
(X)+ = {x∈ X | x > 0}. Therefore it is sufficient (and also necessary) to prove that there existU ′ ⊆U ,
V ′ ⊆V so that|U ′|= |V ′|= t and(U ′−U ′)+∩ (V ′−V ′)+ = /0.

Let U = {u0, . . .,ut2−1}, V = {v0, . . .,vt2−1} so thatu0 < .. . < ut2−1 andv0 < .. . < vt2−1. We define
the integersmu,mv by

mu = min {ui+t−1−ui | i = 0,1, .., t2− t} and mv = min {vi+t−1−vi | i = 0,1, .., t2− t} .

Suppose that, e.g.mu ≤ mv, and lets be an integer withmu = us+t−1−us. We claim that the choice
U ′ = {us,us+1, . . .,us+t−1}, V ′ = {v jt | j = 0,1, . . ., t−1} meets our requirements. Indeed, ifv jt ,vkt ∈V ′

and j < k thenvkt−v jt ≥ v( j+1)t−v jt > v jt+t−1−v jt ≥mv≥mu, and therefore each element of(V ′−V ′)+
is strictly greater thanmu. On the other handU ′ ⊆ [us,us+t−1] = [us,us + mu]; therefore(U ′−U ′)+
contains only integers not greater thanmu. Consequently(U ′−U ′)+∩ (V ′−V ′)+ = /0.

Definitions.
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1. func(n,2) will denote the set of all functions defined on{0, . . .,n−1} with values inF2. Similarly,
func([l ,n),2) will denote the set of all functions defined on the interval[l ,n) = {l , . . .,n−1} with
values inF2.

2. Assume thatn1,n2 are positive integers andf ∈ func(n1 +n2−1,2). Then diag( f ,n1,n2) will be
then1 by n2 matrix (di, j), i = 0, . . .,n1−1, j = 0,1, . . .,n2−1, wheredi, j = f (i + j).

3. Assume thatn1,n2,k1,k2, are positive integers,n1 > k1, n2 > k2, f ∈ func(k1 +k2−1,2), andg is
taken with uniform distribution from the set func([k1 +k2,n1 +n2−1),2). Φ(n1,n2, f ) will be a
random variable whose value is diag( f ∪g,n1,n2) (wheref ∪g is the unique common extension of
f andg to [0,n1+n2−1)). Φ(n1,n2) will denote the random variable whose value is diag(h,n1,n2)
whereh is taken with uniform distribution from the set func(n1 +n2−1,2).

4. SupposeA= (ai, j), i = 0, . . .,n1−1, j = 0,1, . . .,n2−1, is ann1 byn2 matrix andS⊆{0,1, . . .,n1−
1}, T ⊆ {0,1, . . .,n2−1}. Then sub(A,S,T) will denote the|S| by |T| matrix consisting of those
entries ofA which have row numbers inSand in column numbers inT.

Lemma 4.5. Assume that n1, n2, k1, and k2 are positive integers, k1 < n1, k2 < n2, f is a function on
{0,1, . . .,k1 +k2−1} with values in F2, S⊆ {0,1, . . .,n1−1}, T ⊆ {0,1, . . .,n2−1}, and

|(S∩{k1, . . .,n1−1})+(T ∩{k2, . . .,n2−1})| ≥ m .

Then with probability at least1−2−m the following holds: the rank of the matrixsub(Φ(n1,n2, f ),S,T)
is greater than the rank of the matrix

sub(Φ(n1,n2, f ),S∩{0,1, . . .,k1−1},T ∩{0,1, . . .,k2−1}) .

Remark 4.6. If we define random Hankel matrices over an arbitrary fieldF so that the random entries
of the Hankel matrices are picked from a finite subsetD of F with uniform distribution, then our Lemma
remains true if we substitute 1−|D|−m for the probability 1−2−m. (Naturally we also have to modify
the definition onΦ(n1,n2, f ), since in this casef is a function whose values are in the setD.)

Proof ofLemma 4.5. Let Φ(n1,n2, f ) = (ϕi, j), i = 0, . . .,n1−1, j = 0, . . .,n2−1. For each̀ = 0,1,2, . . .
let S̀ = S∩{0,1, . . ., `}, Tj = T ∩{0,1, . . ., `}. For eachi ∈ S, j ∈ T, wi, j will be a function defined
on Tj by wi, j(x) = ϕi,x for all x ∈ Tj . Let r be rank of the matrix sub(Φ(n1,n2, f ),Sk1−1,Tk2−1). r is
the dimension of the vectorspace generated by the functionswi,k2−1, i ∈ Sk1−1. Suppose that̄S⊆ Sk1−1,
|S̄|= r so that the set of functionsW = {wi,k2−1 | i ∈ S̄} are linearly independent.

According to the definition ofΦ(n1,n2, f ), we have to randomize a functiong with values inF2

which is defined on the interval[k1+k2,n1+n2−1). We randomize the values ofg sequentially for each
x∈ [k1+k2,n1+n2−1)∩(S+T). Assume thatx∈ [k1+k2,n1+n2−1)] andg(y) has been randomized
already for ally< x. Suppose that for a suitably choseni ∈S∩{k1, . . .,n1−1} and j ∈T∩{k2, . . .,n2−1}
we havei + j = x. By the assumption of the lemma this will happen for at leastm different values ofx.
Therefore, it is enough to show that for such anx the following holds with a probability at least1

2: the
functionwi, j is linearly independent from the set of functionsH = {wl , j |l ∈ S̄}. (Such an independence
obviously implies that the rank of the matrix sub(Φ(n1,n2, f ),S,T) is greater than|S̄| = r.) Before the
randomization ofg(x) the functionwi, j is known in every point ofTj with the exception ofj. Since there
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are two possibilities for the value ofwi, j at j, we have two functionsu,v; hence for the randomization of
g(x) we haveP(wi, j = u) = P(wi, j = v) = 1

2. Consequently, it is enough to show that at least one of the
two vectorsu,v is linearly independent from the setH. Indeed, if both are linearly dependent, then their
difference is also linearly dependent on them, that is,u− v = ∑s∈S̄γsws, j whereγs 6= 0 for at least one
s∈ S̄. We show that this is impossible. Indeed,u−v is a function onTj which is zero everywhere but at
j and(u−v)( j) = 1. Consequentlyj ≥ k2 implies that the restriction ofu−v to Tk2−1 is 0. Therefore we
get that∑s∈S̄γs

γsws,k2 = 0. The functionsws,k2 are linearly independent so we haveγs = 0 for all s∈ S̄,
in contradiction to our assumption.

Lemma 4.7. Assume that for each j= 1,2, I( j)
1 , . . ., I ( j)

l , is a partition of the interval[0, . . .,n) into

pairwise disjoint subintervals, S(1),S(2) ⊆ {0,1, . . .,n−1}, and|(S(1)∩ I (1)
i )+ (S(2)∩ I (2)

i )| ≥ mi for all
i = 1, . . ., l. Then, for any positive integer r, the probability that the rank ofsub(Φ(n,n),S(1),S(2)) is not
greater than l− r is at most

∑
1≤i1<···<ir≤l

2−mi1−...−mir .

Remark 4.8. If we define the random Hankel matrixΦ(n,n) over an arbitrary fieldF in the way de-
scribed inRemark 4.6(just afterLemma 4.5), then our lemma remains true if we substitute|D|−mi1−...−mir

for 2−mi1−...−mir in the last expression of the lemma.

Proof ofLemma 4.7. Assume that for allj = 1,2, x ∈ I ( j)
i , y ∈ I ( j)

i+1 implies x < y, and assume further

that for all j = 1,2, i = 1, . . ., l , I ( j)
i = [b j,i ,b j,i+1). Let

S( j)
i = S( j)∩

i⋃
k=1

I (1)
k = S( j)∩ [0,b j,i+1) ,

and letΦi = sub(Φ(n,n),S(1)
i ,S(2)

i ). If the rank ofX = sub(Φ(n,n),S(1),S(2)) is not greater thanl − r
then there arer integers 1≤ i1 < .. . < ir ≤ l so that the rank ofΦit andΦit+1 is the same fort = 1, . . ., r.
We show that for each fixedi1, . . ., ir the probability of this event is at most 2−mi1−...−mir which clearly
implies the statement of the lemma. Suppose thati1, . . ., ir are fixed. According to the definition of
Φ(n,n) we randomize anh∈ func(2n−1,2). We pick the values ofh on [2n−1,2) sequentially. Assume
that for somet ∈ {1, . . ., r} the values ofh(0), . . .,h(bit ,1+bit ,2)−1 have been already fixed. We define a
function f on the set{0, . . .,h(bit ,1 +bit ,2)−1} by f (y) = h(y) for all y = 0, . . .,h(bit ,1 +bit ,2)−1. Now
we randomize the values ofh(x) for all x = bit,1 + bit,2, . . .,bit+1,1 + bit+1,2 −1. We apply Lemma4.5 for

this part of the randomization withn j → bt+1, j , k j → bit , j for j = 1,2, S→ S(1)
t , T → S(2)

t , m→ mit , and
for the functionf defined above. We get that the probability of the event rank(Φit−1) = rank(Φit ) is less
than 2−mt . This implies that the probability that rank(Φit−1) = rank(Φit ) for all t = 1, . . ., r is at most
2−m1−...−mr .

The following lemma will be used to give an estimate on the probability that the rank of a matrix
sub(A,S,T) is at leastR where the setsS,T ⊆ {0,1, . . .,n− 1} are fixed andA is a random Hankel
matrix overF2. Since the statement of the lemma depends on many parameters we restate their roles
as described in the “sketch of the proof” ofTheorem 4.2. The sizes of the setsS,T are the same:
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|S| = |T| = q. We may think oft as a large constant, although the lemma requires onlyt2 < q. In the
“sketch of the proof” (using the notationS→X1,T →X2) we made the simplifying assumption thatt2|q,
and partitioned bothSandT into q

t2 subsets each of sizet2. Without the assumptionq2|t, we will take
first subsets of bothS andT with t2b q

t2c elements and partition these subsets into classes each of size
t2. ThereforeQ = b q

t2c of the lemma refers to the number of classes in these partitions. In the estimate

given in the lemma the factor 2−(Q−R+1)t2
is an upper bound on the probability that if we selectR−1

pairs of corresponding classes from the two partitions, then the remaining ones do not increase the rank
of sub(A,S,T) in the sense explained in the “sketch”. The factor

( Q
Q−R+1

)
is the number of ways that we

can select theseR−1 pairs from theQ pairs of classes. The factor
( n

Qt

)2
has the following meaning. In

the proof we consider all of the pairs of subsetsS′ ⊆ S, T ′ ⊆ S and estimate the probability that for at
least one of them the rank of sub(A,S′,T ′) will be R or greater. Then we multiply this estimate by the
number of possible pairs of setsS′,T ′. Since we selectS′,T ′ with |S′| = |T ′| = Qt (they contain exactly

t elements from each class) the number of possible selections is at most
( n

Qt

)2
.

Lemma 4.9. Assume that n,q,R, t are positive integers, t2 < q < n and R< b q
t2c. Suppose further that

A= {ai, j}, i = 0, . . .,n−1, j = 0, . . .,n−1 is a random n by n Hankel matrix over F2, taken with uniform
distribution on the set of all such matrices. Let p be the probability of the following event:

(8). for all S⊆ [0,n),T ⊆ [0,n), |S|= |T|= q the rank of the matrix sub(A,S,T) is at leastR.
Then

p≥ 1−
(

n
Qt

)2( Q
Q−R+1

)
2−(Q−R+1)t2

whereQ = b q
t2c.

Remark 4.10. This lemma also remains true with some modifications over an arbitrary field if we
randomize the Hankel matrixA according to the distribution described in the remark afterLemma 4.5.
Namely we have to substitute|D|−(Q−R+1)t2

for 2−(Q−R+1)t2
in the last expression of the lemma.

Proof ofLemma 4.9. We will define a functionF on the set of all ordered pairs〈X1,X2〉 with Xj ⊆
{0, . . .,n− 1}, for j = 1,2, |X1| = |X2| = q. Before getting into the details of this definition, recall
from the “sketch of proof”ofTheorem 4.2that, roughly speaking, we getF(〈X1,X2〉) in the following

way. First we partition bothX1 andX2 into classes of sizest2. Then we select subsetsJ(1)
i , J(2)

i from

each pairs of corresponding classes with the property that|J(1)
i | = |J(2)

i | = t, |J(1)
i +J(2)

i | = t2. The pair

〈
⋃

i J
(1)
i ,

⋃
i J

(2)
i 〉 is the value ofF.

Each value of the function will be a pair〈Z1,Z2〉 so thatZ1,Z2 ⊆ {0, . . .,n−1} and |Z1| = |Z2| =
b q

t2ct. The definition is the following. Assume that the pair〈X1,X2〉 is given with the described prop-

erties. For eachj = 1,2 we pick pairwise disjoint subsetsK( j)
1 , . . .,K( j)

Q of Xj , whereQ = b q
t2c, so that

|K( j)
i |= t2 for all j = 1,2 i = 1, . . .,Q andx∈ K( j)

i , y∈ K( j)
i′ impliesx < y for all j = 1,2, 1≤ i < i′ ≤Q.

(By the definition ofQ this is possible.)

Assume now that ani = 1, . . .,Q is fixed. We applyLemma 4.3with U →K(1)
i , V →K(2)

i . LetU ′, V ′

be the sets whose existence is stated inLemma 4.3and letJ(1)
i =U ′, J(2)

i =V ′. Finally letZ j =
⋃Q

i=1J( j)
i
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for j = 1,2 and letF(〈X1,X2〉) = 〈Z1,Z2〉. Clearly the pair〈Z1,Z2〉 satisfies the conditions described
above as well as the following additional properties:

(a). for all j = 1,2 J( j)
1 , . . .,J( j)

Q is a partition ofZ j , |Ji |= t for all i = 1, . . .,Q,

(b). for all j = 1,2, 1≤ i < i′ ≤ Q x∈ J( j)
i , y∈ J( j)

i′ impliesx < y,

(c). for all j = 1,2 andi = 1, . . .,q we haveZ j ⊆ Xj and|J(1)
i |+ |J(2)

i |= t2.

Assume now that〈Z1,Z2〉 ∈ range(F). We estimate the probabilityρZ1,Z2 of the event that the rank of
the matrix sub(A,Z1,Z2) is smaller thanR.

We applyLemma 4.7with l → Q, I ( j)
i → J( j)

i , S(1) → Z1, S(2) → Z2, mi → t2, r → Q−R+1. We get
thatρZ1,Z2 is at mostQQ−R+12−(Q−R+1)t2

. Therefore, using that|Z j |= Qt, we get that the probability
that the rank of the matrix sub(A,Z1,Z2) is smaller thanR for at least one〈Z1,Z2〉 ∈ range(F) is at most

|range(F)|
(

Q
Q−R+1

)
2−(Q−R+1)t2 ≤

(
n
Qt

)2( Q
Q−R+1

)
2−(Q−R+1)t2

.

For each pairS,T, with the properties given in the lemma, ifF(〈S,T〉) = 〈Z1,Z2〉, thenZ1 ⊆ S, Z2 ⊆ T
and this implies that rank(sub(A,S,T)) ≥ rank(sub(A,Z1,Z2)) so we have the same upper bound on the
probability that the rank of sub(A,S,T) is smaller thanR.

Proof ofTheorem 4.2. Assume thatθ > 0 is sufficiently small,c1 > 0 is sufficiently small with respect
to θ , andc2 > 0. Suppose further thatn is sufficiently large andc2n < q≤ n. We applyLemma 4.9with
n, q, R= c1| log(q

n)|−1q, andt = bθ−1| log(q
n)|c. We get that the probability that rank of sub(A,S,T) is

at leastR is at least

p≥ 1−
(

n
Qt

)2( Q
Q−R+1

)
2−(Q−R+1)t2

whereQ = b q
t2c. We show that (

n
Qt

)2( Q
Q−R+1

)
2−(Q−R+1)t2

is at most12 by giving upper bounds in its factors. As we have remarked already at the end the of sketch
of the proof, the crucial fact that leads to the desired result is that in the exponent of 2 we have the factor
t2 and not onlyt. We will see that in the actual estimates thist2 makes it possible to get the strong upper
bound we need.

We will use that if 0< α < 1
2, n is sufficiently large, andx < αn then(

x
αn

)
≤ e2αnlog 1

α .

Let γ = q
n, andλ = Qt2

q . Clearlyc2 < γ < 1 and1
2 < λ ≤ 1. Hence(

n
Qt

)
=

(
n

γλ t−1n

)
≤ e2γλ t−1nlog(γ−1λ−1t) = e2γλ t−1n(logγ−1+logλ−1+logt) .
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Using thatt−1 logγ−1 = θ , t−1 logλ−1 ≤ t−1 log2≤ t−1 ≤ θ , andt−1 logt ≤ t−
1
2 ≤ θ

1
2 we get that(

n
Qt

)2

≤ e4γλ (θ+θ+θ
1
2 )n ≤ 2

1
20γλn

and (
Q

Q−R+1

)
≤ 2Q = 2γλ t−2n ≤ 2

1
20γλn

if θ is sufficiently small. Moreover,

2−(Q−R+1)t2 ≤ 2−
1
8Qt2 = 2−

1
8γλ t−2t2n = 2−

1
8γλn .

These inequalities imply that(
n
Qt

)2( Q
Q−R+1

)
2−(Q−R+1)t2 ≤ 2

1
20γλn+ 1

20γλn− 1
8γλn ≤ 2−( 1

8−
1
10)γλn <

1
2

if n is sufficiently large. (Here we use thatc2 < γ and 1
2 < λ .)

5 The proof of Lemma 3.5

5.1 A lemma about disjoint sets of variables

In this section we proveLemma 3.5using Lemma 9 of [4]. (This is the most important technical lemma
of that paper with a long proof.) We reformulate below this result from [4] as Lemma A1to make it
consistent with the terminology of the present paper. In the proof we will also use other lemmata from
[4]; we will formulate them asLemma A2, Lemma A3, andLemma A4in the present paper. These
latter three lemmata have short proofs (given in [4]) using only the definitions of the concepts contained
in their statements. The following definitions are needed for the statement ofLemma A1.

Definitions.

1. Assume thatB is a branching program withn input variables andη is an input forB. (Recall that
an input is a{0,1}-valued function defined on{0,1, . . .,n−1} with the meaning that the value
η(i) is assigned to the variablexi .) At inputη the branching program follows a path in the directed
graphG as described in the definition of a branching program. We associate a time (a nonnegative
integer) with each node of this path. If the path isv0,v1, . . .,vi , wherev0 is the source node andvi

is a sink node, then for all integerst ∈ [0,1], we will say that the program isat node vt at time t
with respect to inputη . We will use the notationstate(t,η) = vt .

2. Assume thatstate(t,η) = vt , andvar(vt) = xi . In this case we will say that the programaccesses
the variablexi at timet.

3. An input η is visible if each variablexi , i = 0,1, . . .,n− 1 is accessed at some time during the
computation performed at inputη .

THEORY OFCOMPUTING, Volume 1 (2005), pp. 149–176 169



M IKL ÓS AJTAI

4. Assume thatB is a branching program so that the path associated with each input is of lengthl .
In this case we will say that for each input thelengthof the program isl .

Additional assumptions about B. Without loss of generality we will make the following two addi-
tional assumptions about the branching programB in the proof ofLemma 3.5.

(a) We assume that every input is visible. Indeed, we can modify the branching programB so that
the new branching programB′ first reads the value of each variable and then continues with the original
computation ofB. The length and the size of the program are thus increased only byn. Moreover, if
Lemma 3.5holds forB′ then clearly it also holds forB since, apart from the size and the depth of the
program,Lemma 3.5treats the program as a black box, it speaks only about the function defined by the
branching program.

(b) We assume that, independently of the input, the length of the branching program is exactlykn,
that is, for each inputη the program reaches a sink node at timekn. This is not an essential restriction
because there is another programB′, whose size is larger than the size ofB by only a factor of at most
n2, so that programB′ works exactly the same way as programB but also counts the time and whenB

reaches a sink nodev then it works further till timeknwhen it gives the same output as the output ofB at
nodev. (We may assume that at each timet in this new additional time interval, the branching program
B′ accesses, e.g., the variablex0.)

As a consequence of this second assumption, for each fixed inputη , the functionstate(t,η) is
defined for allt = 0,1, . . .,nk and the branching program accesses a variable at each timet for t =
0,1, . . .,kn−1.

Definitions.

1. Suppose thatσ is a real number withσ ∈ (0, 1
2). We assume that a partition of the set{0,1, . . .,kn−

1} into intervals is fixed so that the length of each interval is betweenσn and 2σn. I(σ) will denote
the set of these intervals. If the choice ofσ is clear from the context, we will omit the superscript
σ .

2. Assume thatT ⊆ {0,1, . . .,kn−1} is a set of integers. The set of all integersi ∈ {0,1, . . .,n−1},
so that the input variablexi is accessed by the branching program at somet ∈ T, at inputη , will
be denoted byregister(T,η). The set of all integersj in register(T,η) so that the value of
variablex j is not accessed at any time outsideT at inputη will be denotedcore(T,η). Clearly
core(T,η)⊆ register(T,η).

Remark 5.1. The notationregister(η) was motivated by the fact that, in [4], instead of branching
programs we work with random access machines, and so instead of reading the values of variables the
machine reads the content of registers. To make the two papers more compatible we did not change this
notation.

Definitions.

1. If a σ > 0 is given,F ⊆ I(σ), andχ is an input, thenstem(F,χ) will denote the restriction ofχ
onto{0,1, . . .,n−1}\core(F,χ).

2. Suppose thatT ⊆ {0, . . .,kn−1}. We say thatx is at theright borderof T if x /∈ T andx−1∈ T.
The set of those integers which are at the right border ofT will be denoted byright(T).
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3. Suppose thatT ⊆ {0, . . .,kn− 1} and χ is an input. Let f be a function defined on the set
right(T), so that for allt ∈ right(T) we have f (t) = state(t,χ). We will call f the right-
statefunction of the setT at inputχ and will denote it byrstateT,χ .

Remark 5.2. The significance of the setcore(T,χ), the right border ofT, and the functionrightT,χ

is the following. Assume that starting from the inputχ we change the value of some of the variables in
core(T,χ) in a way that for the new inputχ ′ we haverightT,χ = rightT,χ ′ . Then the output of the
program remains unchanged.

Lemma A1. For all positive integerk, if σ > 0 is sufficiently small with respect tok, ε > 0 is sufficiently
small with respect toσ , n is sufficiently large with respect toε, B is a branching program withn input
variables,B is of size at most 2εn, for each input the length of the program iskn, andG is a set of visible
inputs, then the following holds. There existκ > σ , F1,F2, f1, f2, H satisfying the following conditions:

(9). H ⊆ G and|H| ≥ 2−κn|G|

(10). F1,F2 are disjoint subsets ofI(σ)

(11). for all i = 1,2 and j = 3− i if χ,ξ ∈ H, andstem(Fi ,χ) = stem(Fi ,ξ ), thencore(Fj ,χ) =
core(Fj ,ξ )

(12). |core(Fi ,χ)| ≥ κτn for all χ ∈ H andi = 1,2, whereτ = 1− 1
50k,

(13). rstateχ,
⋃

Fi = fi for all χ ∈ H, i = 1,2.

(14). κ < 2−| logσ |
1
4

Motivation. The intuitive meaning ofLemma A1is the following. Suppose that a branching program
works in linear time. Then, if we segment the time into intervals of length aboutσn, it is possible to
select two disjoint sets of intervalsF1 andF2 so that in each of them, for a large number of inputsχ, we
access many variables (the ones incore(F3−i ,χ)) that are not accessed anywhere else. Moreover the
setsF1 andF2 can be selected with the additional property described below. If the state of the branching
program is fixed at the right borders ofF1 andF2 (Condition (13)), thencore(F1,χ) andcore(F2,χ)
are independent from each other in the following sense. In order to know what iscore(Fi ,χ), we do
not have to know the values of the variables incore(F3−i ,χ) (Condition (11)). This last condition is the
crucial part of the lemma, everything else in it can be proved by a simple counting argument.

Remarks.

1. Condition (14)was not included in the original statement of the lemma in [4] but its proof clearly
implies it. The exact form of the upper bound onκ is not important for us, any upper bound of the
typeκ < g(σ) where limx→∞ g(x) = 0 would be sufficient for the proof ofLemma 3.5.

2. We have changed the notation of the original lemma (by substitutingκ for λ ) to make it more
compatible to the notation ofLemma 3.5.
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3. The lemma in [4] was originally formulated for random access machines, however in the case
when the possible contents of the input registers form a set with two elements, the notion of the
random access machines used there is identical to the notion of (2-way) branching programs.
ThereforeLemma A1is a special case of Lemma 9 of [4].

4. There is a slight difference between the notation of the two papers: in [4] an input is a function
defined on the set{1, . . .,n} while in the present paper it is defined on{0,1, . . .,n−1}.

5. The proof ofLemma 3.5from Lemma A1is almost identical to the proof of Theorem 4 of [4]
from Lemma 9 of the same paper.

5.2 ReducingLemma 3.5to Lemma A1

As we pick the values of the various parameters inLemma 3.5we will describe the values of the param-
eters ofLemma A1when we use it in our proof.

Assume thatk is given (we will applyLemma A1with the same value ofk). Now we pickσ1 and
σ2 so thatσ1 is sufficiently small with respect tok andσ2 is sufficiently small with respect toσ1. Let
σ = 3σ2. Let ε > 0 be sufficiently small with respect toσ2, let n be sufficiently large with respect toε,
and letB be a branching program of lengthkn (for each input)and size at most 2εn. (ε, B andn are the
same in the two lemmata.) We pickδ ∈ {0,1} so that|B−1(δ )| ≥ 2n−1. Let G= B−1(δ ) in Lemma A1.
(As we noted earlier we may assume that every input ofB is visible, soG meets this requirement of
Lemma A1.) Now we pickκ, F1,F2, f1, f2,H with the properties listed inLemma A1.

As a first step in the proof ofLemma 3.5we prove that there is āχ ∈ H so that for eachi = 1,2 the
following condition is satisfied:

(15). assume thatsi = |core(Fi , χ̄)| andȲi is the set of all partial inputsη defined oncore(Fi , χ̄) so that
χ̄ oη ∈ H; then|Ȳi | ≥ 1

62−κn2si .

For the proof we use the following two lemmata from [4]. The first one,Lemma A2is Lemma 10 in
[4], the second oneLemma A2, is Proposition 3 in that paper.

Lemma A2. Suppose thatF ⊆ I, χ, ξ are inputs withstem(F,χ) 6= stem(F,ξ ) andrstateχ,
⋃

F =
rstateξ ,

⋃
F . Then there is anx∈ domain(stem(F,χ))∩domain(stem(F,ξ )) so thatχ(x) 6= ξ (x).

Lemma A3. Assume thatA⊆ A′ are finite sets,P is a partition ofA, P′ is a partition ofA′, each class
of P is contained in a single class ofP′, andd = |A||A′|−1. Then for allλ > 0, there are at mostλ |A|
elementsx of A so that ifC,C′ are the uniqueP,P′ classes containingx then|C||C′|−1 ≤ λd.

As a first step in proving the existence of āχ ∈ H so that for alli = 1,2 Condition (15)is satis-
fied, we fix ani ∈ {1,2} and give a lower bound on the number of inputsχ̄ ∈ H with Condition (15)
(with this fixed i). We define a partitionTi of H in the following way. ∀χ,ξ ∈ H, ξ ,χ belong to the
same class iffstem(Fi ,χ) = stem(Fi ,ξ ). It is a consequence of this definition that ifχ andξ do not
belong to the same class ofTi , then the functionsstem(Fi ,χ) andstem(Fi ,ξ ) must be different (for
the fixed value ofi). Since the domains of these two functions, that is,{0,1, . . .,n− 1}\core(Fi ,χ)
and{0,1, . . .,n−1}\core(Fi ,ξ ) are not necessarily identical, in principle it would be possible for the
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functionsstem(Fi ,χ) and= stem(Fi ,ξ ) to be compatible, that is, to be identical on the intersection of
their domains. HoweverCondition (13)of Lemma A1andLemma A2imply that this can never happen,
that is,

(16). functions that belong to different classes ofTi are not compatible.

We will denote byH ′ the set of all inputsζ so that there is aχ ∈ H with the property thatζ is an
extension ofstem(χ,H). For each fixedχ ∈ H let Wχ be the set of allζ ∈ H ′ so thatζ is an extension
stem(Fi ,χ). Condition (16)implies that the setsWχ , χ ∈ H (we take each of them only once) form a
partitionT′

i of H ′. Clearly each class ofTi is contained in exactly one class ofT′
i .

We want to applyLemma A3with A→ H, A′ → H ′, P→ Ti , P′ → T′
i , andλ → 1

3. Since, by the
definition ofG, we have|G| ≥ 2n−1, Condition (9)of Lemma A1implies that|H| ≥ 2−κn2n−1. Obviously
|H ′| ≤ 2n and sod = |H||H ′|−1 ≥ 1

22−κn. Therefore, according toLemma A3, for at least13|H| inputsχ

from the setH, the following condition is satisfied:χ belongs to a class inTi whose density in the unique
class ofT′

i containing it is at most13d ≥ 1
62−κn. Let Xi be the set of all inputsχ ∈ H with this property.

Since|Xi | ≤ 1
3|H| for bothi = 1 andi = 2 we have that|H\(X1∪X2)| ≥ 1

3|H|. Let χ̄ ∈H\(X1∪X2). The
definition ofXi implies that for alli = 1,2, χ̄ belongs to a class ofTi whose density in the corresponding
class ofT′

i is greater than162−κn. Since each class ofT′
i contains exactly 2si elements this implies that̄χ

meets the requirements ofCondition (15).
Assume that̄χ is fixed withCondition (15)andȲi , i = 1,2 are the sets defined in the description of

that property. We will prove the following:

(17). for all ηi ∈ Ȳi , i = 1,2 we have(χ̄ oη1) oη2 ∈B−1(δ ).

For the proof of this fact we use the following lemma which is Lemma 2 in [4]:

Lemma A4. Assume thatχ is an input,η1, η2 are partial inputs,T1,T2 ⊆ {0,1, . . .,nk−1}. If χ, η1, η2,
T1, andT2 satisfy the following conditions, thenB(χ) =B((χ oη1) oη2).

(18). domain(η1) anddomain(η2) are disjoint.

(19). T1 andT2 are disjoint.

(20). for all i = 1,2 we havedomain(ηi)⊆ core(Ti ,χ)

(21). for all i = 1,2 we haverstateTi ,χ = rstateTi ,χoηi

(22). for all i, j ∈ {1,2}, i 6= j we havedomain(ηi)∩register(Tj ,χ oη j) = /0.

To prove thatCondition (17)is satisfied bȳχ, we show that the assumptions ofLemma A4hold with
χ → χ̄, η1, η2, T1 →

⋃
F1, andT2 →

⋃
F2.

Condition (18). By the definitions ofηi and the functioncore we havedomain(ηi) = core(Fi ,χ)⊆
Fi for i = 1,2. Condition (10)of Lemma A1implies thatF1∩F2 = /0, sodomain(η1) anddomain(η2)
are disjoint.

Condition (19). This is a consequence ofProposition (10)of LemmaA1.
Condition (20). By the definition ofηi this holds with equality.
Condition (21). This follows fromχ, χ̄ oηi ∈ H andCondition (13)of LemmaA1.
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Condition (22). Assume thati, j ∈ {1,2}, i 6= j are fixed. We havedomain(ηi) = core(Fi , χ̄).
Condition (11)of Lemma A1and the fact̄χ oη j ∈ H together imply thatcore(Fi , χ̄) = core(Fi , χ̄ oη j).
Thereforedomain(ηi) = core(Fi , χ̄ oη j). F1∩F2 = /0 so at inputχ̄ oη j and at times belonging to the set⋃

Fj we can never access a variable incore(Fi , χ̄ oη j), and consequently

domain(ηi)∩register(Tj , χ̄ oη j)) = /0 .

Since all of the assumptions ofLemma A4hold, its conclusion must hold as well and soχ̄ satisfies
Proposition (17).

We will need the following observation to conclude the proof. Letcore(Fi , χ̄) = Si . For anyi = 1,2
and for anyX ⊆ Si , there is anȲi(X) ⊆ Ȳi so thatη(x) = ζ (x) for all η ,ζ ∈ Ȳi(X), x ∈ Si\X, and
|Ȳi(X)| ≥ 1

62−κn2|X|. Indeed, we may partition the elements ofȲi into disjoint classes according to the
values of its elements on the setSi\X. Since there are at most 2si−|X| classes, at least one class must
contain at least 2−si+|X||Ȳi | elements.Ȳi(X) will be such a class. The stated lower bound on|Ȳi(X)| and
the lower bound on|Ȳi | formulated inCondition (15)imply |Ȳi(X)| ≥ 1

62−κn2|X|.
By Condition (12)of Lemma A1we have|Si | ≥ κτn for i = 1,2. Let [1

2κτn] = r. Let zi be therth
smallest element ofSi and assume that e.g.z1 ≤ z2. LetW1 be the set of ther smallest elements ofS1 and
let W2 be the set of ther largest elements ofS2. Let Yi = Ȳi(Wi) for i = 1,2. According to our previous
observation we have

(23). for all i = 1,2, |Yi | ≥ 1
62|Wi |−κn.

By the definitions ofr, zi , andWi , Condition (1)is satisfied byW1 andW2. We claim that the other
requirements of the lemma are also met by the following choice of the various parameters. We pick two
partial inputsζ1 ∈ Y1, ζ2 ∈ Y2 in an arbitrary way. Letχ = (χ̄ o ζ1) o ζ2, λ = 2κ, andµ = |W1|n−1 =
|W2|n−1. (Wi , Yi have already been defined.)

The definitions ofσ1,σ2,ε, andδ at the beginning of the proof ofLemma 3.5show that the require-
ments of the lemma, stated before the conditionsλ ∈ (σ2,σ1), µ ∈ (σ2,σ1), are met.λ ∈ (σ2,σ1) is an

immediate consequence ofλ = 2κ, the inequalitiesσ < κ, κ ≤ 2−| logσ |
1
4 , and the fact that we choose

σ2 = 1
3σ so that it is sufficiently small with respect toσ1.

The fact thatµ ∈ (σ2,σ1) is a consequence of the following facts:τ = 1− 1
50k (cf. Condition (12)of

Lemma A1), µ = |Wi |n−1, |Wi |= [1
2κτn], σ < κ ≤ 2−| logσ |

1
4 , σ = 3σ2, andσ2 is sufficiently small with

respect toσ1. Indeedσ = 3σ2 is sufficiently small with respect toσ1 (for a fixedk), and so

µ =
[

1
2

κ
τn

]
n−1 ≤ 1

2
κ

τ ≤ 2−| logσ |
1
4 (1− 1

50k ) < σ1 .

On the other hand

µ =
[

1
2

κ
τn

]
n−1 >

1
3

κ
τ ≥ 1

3
σ

1− 1
50k ≥ 1

3
σ = σ2

and soµ ∈ (σ2,σ1).
We have already seen thatCondition (1)of Lemma 3.5is satisfied.
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Condition (2)of Lemma 3.5is a consequence of the definition ofµ.
Condition (3). Using the inequality ofCondition (23)we get|Yi | ≥ 1

62|Wi |−κn ≥ 2|Wi |−λn = 2µn−λn.
Condition (4). By the definition ofr = |Wi |= µn we haveµn = [1

2κτn] and so

µ ≥ 1
3

κ
τ =

1
3
(
λ

2
)τ =

1
3
(
λ

2
)1− 1

50k .

Therefore

µ
1+ 1

100k ≥ (
1
3
)1+ 1

100k (
λ

2
)(1− 1

50k )(1+ 1
100k ) ≥ 2λ .

(Here we used that byCondition (17), bothκ andλ > 0 are sufficiently small with respect tok.)
Condition (5)of Lemma 3.5is a consequence ofCondition (17)and the definitions ofχ andYi .

These definitions imply that(χ oη1) oη2 = (χ̄ oη ′
1) oη ′

2 whereη ′
i = ηi ∪ζi |Si−Wi ∈ Ȳi .
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