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1 Introduction

The celebrated PCP Theorem ([2], [1]) gives a way of writing proofs for (purported) NP statements
such that the proofs can be checked very efficiently by a probabilistic verifier. The verifier needs a very
limited amount of random bits and reads only a constant number of bits from the proof. Moreover, a
correct statement always has a proof that is accepted with probability 1 (or close to 1) andanyproof of
an incorrect statement is accepted only with a tiny probability (called error probability or soundness).

PCPs have surprising connections, first discovered by Feige et al. [5], to inapproximability results,
i. e., results showing that computing even approximate solutions to some NP-complete problems is hard.
The discovery of the PCP Theorem opened up a whole new fascinating direction for proving various
inapproximability results. In the last decade or so, quantitative improvement in the efficiency of PCP
verifiers has led to (in many cases optimal) inapproximability results for many optimization problems
([3], [4], [14], [13], [12], [6]). For different applications, different aspects of the given PCP need to be
optimized. For a detailed discussion of various parameters we refer to [3].

In the current paper we are mostly concerned with making efficient use of queries, i. e., to obtain
very strong PCPs where the verifier reads very few symbols in the proof. More specifically, we are
interested in the trade-off between the number of queries and the error probability.

Samorodnitsky and Trevisan [12] obtained very strong results along these lines, giving a PCP where
the verifier reads 2k+ k2 bits, almost always accepts a correct proof of a correct statement and accepts
a proof of an incorrect statement with probability only marginally larger than 2−k2

. This is a very
impressive result in that each read bit essentially decreases the probability of being fooled by a factor of
2. Their verifier achievesamortized query complexityof 1+δ for anyδ > 0 which is optimal (see [3]).
The amortized query complexity, when we (almost) always accept a correct proof, is formally defined
as the ratio between the number of queries (2k+k2 in this case) and the logarithm of inverse of the error
probability (k2 in this case).

The fact that the verifier sometimes rejects a correct proof of a correct statement is called imperfect
completeness and in their construction Samorodnitsky and Trevisan make essential use of this property
of the verifier. For many reasons it is preferable to have perfect completeness. Firstly, it is natural to
have a proof system where a correct proof of a correct statement is always accepted. Secondly, perfect
completeness is sometimes essential to obtain further results. Some inapproximability results such as
graph coloring sometimes make essential use of perfect completeness and when using a given protocol
as a subprotocol in future protocols, perfect completeness, to say the least, simplifies matters.

Several results in the past have focused on achieving PCPs with perfect completeness and this task
many times turns out to be harder than obtaining corresponding PCPs without this property. For instance,
Håstad shows that 3SAT and 4-Set Splitting are hard to approximate within ratio8

7 + ε. These results
follow from the basic 3-bit PCP of [13] establishing hardness for approximating the number of satisfied
linear equations mod 2. To extend these results to satisfiable instances, however, requires a new PCP
construction and a technically more complicated proof.

The main result of the current paper is to extend the result of Samorodnitsky and Trevisan to include
perfect completeness.

Theorem 1.1. For any integer k> 0 and anyε > 0, any language in NP has a PCP verifier that queries
4k+k2 bits, has perfect completeness and accepts a proof of an incorrect statement with probability at
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most2−k2
+ ε.

Our result is based on a basic non-linear test which reads 5 bits(b1,b2,b3,b4,b5) from the proof
and accepts ifb1 = b2⊕b3⊕ (b4∧b5). We call this constraint Tri-Sum-And and let MAX-TSA be the
problem of satisfying the maximum number of such constraints. We have the following theorem.

Theorem 1.2. For anyε > 0, it is NP-hard to distinguish satisfiable instances of Max-TSA from those
where it is only possible to simultaneously satisfy a fraction1

2 + ε of the constraints.

The choice to study Tri-Sum-And is somewhat arbitrary but guided by our goal to achieve perfect
completeness while keeping the analysis simple. To get perfect completeness we need a nonlinear
predicate while the analysis is greatly aided by having as much linearity as possible present in the
predicate. These two conflicting requirements led to the choice of Tri-Sum-And.

Note thatTheorem 1.2is tight for Max-TSA in that a random assignment satisfies half the con-
straints. There are stronger results for other constraints on 5 bits and in particular Guruswami et al. [7]
give a different predicate for which12 can be improved to7

16.
We then iterate the basic test underlyingTheorem 1.1in a way similar to that used by Samorodnitsky

and Trevisan, where they iterate the basic 3-bit test by Håstad. We present two iterated tests: The first,
which we call the “complete bipartite graph PCP,” is analyzed in a way analogous to the Samorodnitsky-
Trevisan analysis and the second, which we call the “almost disjoint sets PCP,” is analyzed in a way
analogous to how H̊astad and Wigderson [15] analyzed the test of Samorodnitsky and Trevisan.

By a standard reduction the PCP results imply the following theorem.

Theorem 1.3.The Boolean constraint satisfaction problem on k variables is hard to approximate within
ratio 2k−O(

√
k) on satisfiable instances.

This should be contrasted with the approximation algorithm by Trevisan [16] that shows that it is
possible to approximate the Boolean constraint satisfaction problem onk variables withinO(2k/k) on
satisfiable instances.

A test is called non-adaptive if which bits to read are decided before the first bit is read and hence
this set is independent of the actual proof. All the above mentioned PCPs are non-adaptive which is in
fact necessary to obtainTheorem 1.3.

If we allow adaptive tests then by making an iterated version of a test in [7] we can get essentially
the same parameters as Samorodnitsky and Trevisan and thus simply gain perfect completeness.

Theorem 1.4. For any integer k> 0 and anyε > 0, any language in NP has an adaptive PCP verifier
that queries2k+ k2 bits, has perfect completeness and accepts a proof of an incorrect statement with
probability at most2−k2

+ ε.

If we convert the test to be non-adaptive, this test would read 2k+2k2 different bits and hence this result
does not strictly dominateTheorem 1.1.
We extend some of our results to non-Boolean domains and in particular we have the following theorem.

Theorem 1.5. For every prime p, the constraint satisfaction problem on k variables over an alphabet of
size p is hard to approximate within ratio pk−O(

√
k) on satisfiable instances.
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We hope that our results will be useful in the future to prove strong hardness results for approximate
graph coloring. One such result by Khot [9] is

Theorem 1.6 ([9]). There is an absolute constant c> 0 such that it is NP-hard to color a k-colorable
graph with kclogk colors.

Actually this result can be proved from the original form of the Samorodnitsky-Trevisan result and
perfect completeness is not strictly required. But using our PCP with perfect completeness, this result
becomes more straightforward. On a related note one can observe that perfect completeness is essential
in the hypergraph coloring results by Guruswami, Håstad and Sudan [6], and in general it is a sub-
tle problem to determine which coloring inapproximability results require perfect completeness in the
underlying PCP.

1.1 Overview of the paper

This is the complete version of the extended abstract [8]. The paper is organized as follows.Section2
introduces techniques used in this paper. InSection3 we give our results for the Boolean case:Sec-
tion 3.1gives our basic 5-bit test, andSection3.2describes our iterated tests.Section4 extends some of
the results ofSection3 to non-Boolean domains.Section5 concludes with a few remarks.

2 The general setup

In this section we provide the necessary background.

2.1 Notation

Throughout the paper, we have Boolean functions in±1 notation with−1 as logical true. We use
multiplication to denote exclusive-or,∧ for the logical AND function. As we use−1 to denote true we
have

x∧y = AND(x,y) =
1+x+y−xy

2
.

Our default is that AND is highest level connective and in particular

xy∧zw= (xy)∧ (zw) .

Addition is used only over the real and complex numbers.

2.2 The 2-prover protocol

Many efficient PCPs, such as the one given in [12], are conveniently analyzed using the formalism of an
outer and inner verifier. This could also be done here, but to avoid too much formalism we give a more
explicit analysis. Using the results of [1] (as explicitly done in [4]) one can prove that there is a constant
c < 1 such that it is NP-hard to distinguish satisfiable 3-SAT formulas from those where only a fraction
c of the clauses can be simultaneously satisfied by any assignment. This formula can furthermore have
the property that any clause is of length exactly 3 and any variable appears in exactly 5 clauses.
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Given a 3-SAT formulaϕ =C1∧C2 . . .∧Cm which is either satisfiable or where one can only satisfy a
fractionc of the clauses, one can design a two-prover interactive proof system with verifierV as follows.

Basic two-prover protocol

1. V chooses a clauseCk uniformly at random and a variablex j , again uniformly at random, appear-
ing in Ck. V sendsk to proverP1 and j to proverP2.

2. V receives a value forx j from P2 and values for all variables appearing inCk from P1. V accepts if
the two values forx j agree and the clauseCk is satisfied.

It is not difficult to see that if a fractionc of the clauses can be satisfied simultaneously then the
optimal strategy ofP1 andP2 convincesV with probability(2+c)/3. Thus it is NP-hard to distinguish
the case when this probability is 1 and when it is some constant strictly smaller than 1. Note also that if
we start with a formula where each variable appears the same number of times,V could first choose a
random variable and then a random clause containing that variable and get the same distribution.

To make the gap larger, one runs this protocolu times in parallel resulting in the following protocol.

u-parallel two-prover protocol, 2PP(u)

1. V choosesu clauses(Cki )
u
i=1 uniformly at random and for eachi, V chooses a variablex j i , again

uniformly at random, appearing inCki . V sends(ki)u
i=1 to proverP1 and( j i)u

i=1 to proverP2.

2. V receives values for(x j i )
u
i=1 from P2 and values for all variables appearing in(Cki )

u
i=1 from P1. V

accepts if the two values forx j i agree for eachi and all the picked clauses are satisfied.

We letU denote the set of variables sent toP2, i. e., (x j i )
u
i=1 while the set of variables thatP1 gives

values to is denoted byW. Note thatU ⊂W.
By the fundamental result by Raz [11], the probability that the verifier accepts in 2PP(u) when only a

constant fractionc< 1 of the clauses can be simultaneously satisfied is bounded bydu
c for some absolute

constantdc < 1. Let us formulate these properties for future reference.

Theorem 2.1. Let 2PP(u) be the u parallel version of the basic two-prover protocol. Then if only a
fraction c< 1 of the clauses ofϕ can be simultaneously satisfied, then no strategy of P1 and P2 can make
the verifier accept with probability greater than du

c . Here dc < 1 is a constant that only depends on c.

2.3 Long codes

To turn the protocol 2PP(u) into a written proof that can be checked very efficiently, it is natural to, for
each question to eitherP1 or P2, write down the answer in coded form. As many other papers we use the
long codeintroduced by Bellare et al. [3].

Definition 2.2. The long codeof an assignmentx ∈ {−1,1}t is obtained by writing down for each
function f : {−1,1}t →{−1,1}, the valuef (x).

Thus the long code of a string of lengtht is a string of length 22
t
. Note that even though a prover

is supposed to write down a long code for an assignment a cheating prover might write down a string
which is not the correct long code of anything. We analyze such arbitrary tables by Fourier expansion.
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2.3.1 Fourier analysis

In this section, we explain the basics of the Fourier method. Let

F =
{

f | {−1,1}t →{−1,1}
}

and consider the vector space of all “tables”A : F → R. Here the addition of two tables is defined as
pointwise addition and the dimension of this vector space is|F| = 22t

. One can define a natural inner
product on this space by letting the inner product of two tablesA1 andA2 be

〈A1,A2〉 = 2−2t ∑
f

A1( f )A2( f ) .

For α ⊆ {−1,1}t , let χα be a Boolean-valued (i. e.,{−1,1}-valued) table defined as

χα( f ) = ∏
x∈α

f (x) ∀ f ∈ F .

Theχα are calledcharacters. The characters are multiplicative, i. e.,

χα( f1 f2) = χα( f1)χα( f2) .

The characters are in fact symmetric inα and f but as we have used set notation forα we have

χα1( f )χα2( f ) = χα1⊕α2( f ) (2.1)

whereα1⊕α2 is the exclusive-or of the characteristic vectors of the setsα1 andα2. Put differently,
α1⊕α2 is the set which is the symmetric difference ofα1 andα2.

The set of characters (there are 22t
of them) forms an orthonormal basis for the vector space. Thus

any tableA can be expressed as
A( f ) = ∑

α⊆{−1,1}t

Âα χα( f ) ,

whereÂα are real numbers calledFourier coefficients; they can found as

Âα = 〈A,χα〉= 2−2t ∑
f

Â( f )χα( f ) .

If A is Boolean valued, we have Parseval’s identity∑α Â2
α = 1. If A is indeed a correct long code of a

stringx(0) thenÂ{x(0)} = 1 while all the other Fourier coefficients are 0.
In our protocols we pick a function uniformly and then often perform an analysis using the Fourier

expansion. The following lemma is simple but powerful.

Lemma 2.3. Assume that f is picked with the uniform distribution then forα 6= /0,

Ef [χα( f )] = 0

while
Ef [χ /0( f )] = 1 .
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Using this lemma together with (2.1) enables us to compute the expected value of products of char-
acters in a simple way.

We can, to a limited extent, put some restrictions on the tables produced by the prover.

Definition 2.4. A tableA is folded over true ifA( f ) =−A(− f ) for any f .

Definition 2.5. A tableA is conditioned upon a functionh : {−1,1}t →{−1,1}, if A( f ) = A( f ∧h) for
any f .

To make sure that an arbitrary table is folded we access the table as follows. For each pair( f ,− f )
we choose (in some arbitrary but fixed way) one representative. Iff is chosen, then if the value of the
table is required atf it is accessed the normal way by readingA( f ). If the value at− f is required then
in this case alsoA( f ) is read but the result is negated. If− f is chosen from the pair the procedures are
reversed.

Similarly we can make sure that a given table is properly conditioned by always readingA( f ∧h)
when the value forf is needed. Folding over true and conditioning can be done at the same time.

Let us now give the consequences of folding and conditioning for the Fourier coefficients. The
proofs are easy and left to the reader but they can also be found in [14].

Lemma 2.6. If A is folded over true and̂Aα 6= 0 then|α| is odd and in particularα is non-empty.

Lemma 2.7. If A is conditioned upon h and̂Aα 6= 0 then for every x∈ α, h(x) is true (i. e., h(x) =−1).

We will be working with setsU andW with the property thatU ⊂W and we letπ : {−1,1}W →
{−1,1}U be the projection operator that maps an assignment onW to its subassignment onU . For every
β ⊆ {−1,1}W, let π(β )⊆ {−1,1}U be defined as

π(β ) = {π(y) | y∈ β} .

We also need an operatorπ2 defined as follows : for anyβ ⊆ {−1,1}W, π2(β )⊆ {−1,1}U is the set of
thosex which have an odd number of preimages inβ , i. e.,

π2(β ) = {x | x∈ {−1,1}U , |β ∩π
−1(x)| is odd} .

Note that these projection operators depend on the identities ofU andW but as no confusion is likely to
arise we suppress this fact.

A function f with domain{−1,1}U can naturally be extended to domain{−1,1}W by simply using
the valuef (π(y)). We use the same symbol to denote this extended function and hope that no confusion
arises. We have the following simple lemma.

Lemma 2.8. Let β ⊆ {−1,1}W, U ⊆W and f : {−1,1}U →{−1,1}, then

χβ ( f ) = χπ2(β )( f ) .
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3 Efficient PCPs for Boolean domains

In this section we convert 2PP(u) to a PCP. We eliminate the provers by asking the prover to write down
the answer to each question (in encoded form). Furthermore, remember thatU is the set ofu variables
which are sent toP2 in the two-prover protocol. For each possible setU we ask the prover to write a
table,AU , which is supposed to be the long code of the answer byP2 on questionU . We assume thatAU

is folded over true.
Similarly W is the set of variables in theu clauses sent toP1 and letϕW be the conjunction of the

clauses chosen. In the PCP we have a table,BW, which is a supposed to be the long code of the answer
of P1 on questionW. We assume thatB is folded over true and conditioned uponϕW.

3.1 Our basic test

We have the following basic test, defined using the conventions above.

Basic PCP

1. V choosesU , W andϕW as in 2PP(u).

2. V chooses two functionsf and f ′ onU uniformly at random (i. e.,f , f ′ : {−1,1}U →{−1,1}).

3. V chooses two functionsg andg′ onW uniformly at random (i. e.,g,g′ : {−1,1}W →{−1,1}). V
defines a third functionh by setting, for eachy∈ {−1,1}W, h(y) = g(y) f (π(y))(g′(y)∧ f ′(π(y))).

4. V accepts iffBW(h) = BW(g)AU( f )(BW(g′)∧AU( f ′)).

We have the basic completeness lemma.

Lemma 3.1. The completeness of the basic PCP is 1.

Proof. In a correct proof of a correct theorem each table is a correct long code of a restriction of a given
global assignment to the set in question. If we denote this assignment byz thenBW(h) = h(πW(z))
whereπW is the projection ontoW and similarly for the other involved functions. The completeness
now follows from the definition ofh.

The main problem is to establish soundness.

Lemma 3.2. If the verifier in the basic test accepts with probability(1+δ )/2 then there exists a strategy
for P1 and P2 in 2PP(u) that makes the verifier accept with probabilityδ O(1). In particular if the protocol
2PP(u) is chosen to have sufficiently small soundness (by choosing u large enough), then the verifier in
the basic test accepts with probability at most(1+δ )/2.

Proof. For readability we drop the subscripts and useA instead ofAU andB instead ofBW. Consider
the expression

1+B(h)B(g)A( f )(B(g′)∧A( f ′))
2

.
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This expression is 1 if the test accepts and 0 otherwise. Hence the probability of acceptance for the
test is the expectation of this expression over the choice off , f ′,g,g′,U, andW. The hypothesis of the
lemma implies that

Ef , f ′,g,g′,U,W[B(h)B(g)A( f )(B(g′)∧A( f ′))] = δ . (3.1)

Fix U,W, f ′ andg′ and let us study
Ef ,g[B(h)B(g)A( f )] .

Replacing each function by its Fourier expansion we see that this equals

∑
β1,β2,α

B̂β1
B̂β2

ÂαEf ,g[χβ1
( f g( f ′∧g′))χβ2

(g)χα( f )]

which, using (2.1) andLemma 2.8, can be simplified to

∑
β1,β2,α

B̂β1
B̂β2

ÂαEf ,g[χβ1
( f ′∧g′)χβ1⊕β2

(g)χπ2(β1)⊕α( f )] . (3.2)

UsingLemma 2.3, the inner expected value is 0 unlessβ1 = β2 = β andπ2(β ) = α and otherwise it is
1. Thus the expected value in (3.2) equals

∑
β

B̂2
β
Âπ2(β )χβ ( f ′∧g′) ,

and hence we need to analyze

Ef ′,g′ [χβ ( f ′∧g′)(B(g′)∧A( f ′))] . (3.3)

We havea∧b = 1
2(1+a+b−ab) and thus (3.3) equals

1
2

(
E[χβ ( f ′∧g′)]+E[χβ ( f ′∧g′)B(g′)]+E[χβ ( f ′∧g′)A( f ′)]−E[χβ ( f ′∧g′)B(g′)A( f ′)]

)
. (3.4)

Fix the value off ′ and let
β
′ = {y | y∈ β ∧ f ′(π(y)) =−1} .

When averaging overg′, the first and third expected values in (3.4) are 0 unlessβ ′ = /0 while the second
and the fourth expected values equalB̂β ′ andB̂β ′A( f ′), respectively. To estimate the first and third terms
we note that the probability, over the choice off ′, thatβ ′ is empty is 2−|π(β )|. For the other terms we set

α = {x | x∈ π(β ) ∧ f ′(x) =−1}

and use the Cauchy-Schwarz inequality to obtain

Ef ′
[
|B̂β ′ |

]
= 2−|π(β )| ∑

α⊆π(β )
|B̂β∩π−1(α)| ≤ 2−|π(β )|/2

(
∑

α⊆π(β )
B̂2

β∩π−1(α)

)1/2

≤ 2−|π(β )|/2 . (3.5)
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This implies that we get an overall upper bound on the left hand side of (3.1) as

EU,W

[
∑
β

B̂2
β
|Âπ2(β )|(2−|π(β )|+2−|π(β )|/2)

]
≤ EU,W

[
∑
β

B̂2
β
|Âπ2(β )|21−|π(β )|/2

]
, (3.6)

and hence this expression is at leastδ . We use this to establish good strategies forP1 andP2. We first
establish that some parts of the given sum are small. We have the following result from [14, Lemma 6.9]

EU
[
|π(β )|−1]≤ |β |−c , (3.7)

wherec is a constant and in factc = 1
35 is possible. Note that the expectation is taken only overU and is

true for anyW.
Let Sδ = (4(6+2logδ−1)/δ )1/c and consider anyβ of size at leastSδ . Since

E[|π(β )|−1]≤ δ/4(6+2logδ
−1)−1 ,

we conclude that the probability that|π(β )| ≤ (6+2logδ−1) is upper bounded byδ/4. Thus for anyβ
of size at leastSδ we have

EU [21−|π(β )|/2]≤ Pr[|π(β )| ≤ (6+2logδ
−1)]+22+logδ−1 ≤ δ

4
+

δ

4
=

δ

2

and hence discarding terms with|β | ≥ Sδ in (3.6) still keeps a sum of expected value at leastδ/2.
Furthermore since∑β B̂2

β
= 1 we can discard any term with|Âπ2(β )| ≤ δ/4 and not reduce the sum

by more thanδ/4. We conclude that the sum which is the right hand side of (3.6) is at leastδ/4 even if
we restrict summation toβ of size at mostSδ and such that|Âπ2(β )| ≥ δ/4.

Now consider the following strategy for the proversP1 andP2. On receivingW, P1 choosesβ with
probabilityB̂2

β
and returns a randomy∈ β . Similarly on receiving aU , P2 choosesα with probabilityÂ2

α

and returns a randomx∈ α. We note that sinceA,B are folded over true, byLemma 2.6, the setsα and
β selected by the provers are always nonempty. Also, sinceB is conditioned uponϕW, by Lemma 2.7,
everyy∈ β satisfies the formulaϕW. The success-probability of the given strategy is at least

EU,W

[
∑
β

B̂2
β
Â2

π2(β )|β |
−1

]
. (3.8)

If we restrict summation to|β | ≤ Sδ and|Âπ2(β )| ≥ δ/4, (3.8) is at least

S−1
δ

δ/4 EU,W

 ∑
β ;|β |≤Sδ ,|Âπ2(β )|≥δ/4

B̂2
β
|Âπ2(β )|


and, by the above reasoning, this expected value is at leastδ/4 and we get a lower boundS−1

δ
(δ/4)2 for

the success probability of the provers. This completes the proof ofLemma 3.2.

The basic test reads 5 bits(b1,b2,b3,b4,b5) of the proof and checks whetherb1b2b3(b4∧b5) = 1
which is same asb1 = b2⊕b3⊕ (b4∧b5) in {0,1} notation. Theorem 1.2now follows by a standard
procedure of replacing the bits in the proof by variables and asking for a proof that maximizes the
acceptance probability.
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3.2 Iterated tests

We now extend our basic test in a query efficient way. We pick one setU and on it we pickk functions
( fi)k

i=1 andk functions( f ′j)
k
j=1 andk sets(Wl )k

l=1 each with its pair of functions(gl ,g′l ). EachWl is
picked uniformly from the set of possible companion in 2PP(u) to the already pickedU . Thus for each
l , (U,Wl ) appears with the same probability as(U,W) in 2PP(u). Note thatWl is not independent ofWl ′

for l 6= l ′ as they are companions of the sameU .
We perform the basic test for a certain set of quadruples( fi , f ′j ,gl ,g′l ). We give strong analyses in

two cases each utilizingk2 quadruples. One is given by the constrainti = j and is analyzed very much
as Samorodnitsky and Trevisan [12] analyzed their tests. We call it the “complete bipartite PCP”.

The other set ofk2 quadruples is given by all triples (i, j, l ) such thati + j + l = 0 modk. The key
property of this set of triples is that any two different triples have at most one coordinate in common.
Hence we call it the “almost disjoint sets PCP”. This analysis, done in the style of Håstad and Wigderson
[15], is substantially simpler and hence we give this proof first.

In either case we get a test that reads 4k+ k2 bits, has perfect completeness and soundness only
marginally higher than 2−k2

. Theorem 1.1can therefore be obtained either fromTheorem 3.3below
which analyzes the almost disjoint sets PCP orTheorem 3.4which analyzes the complete bipartite test.

3.2.1 The almost disjoint sets PCP

We first define the test which is an iteration of the basic test studied in the last section. The test depends
on the parameteru used in 2PP(u) but we keep this dependence implicit to simplify notation.

textbfk-iterated almost disjoint sets PCP

1. V choosesU as in 2PP(u).

2. V chooses independentlyk sets(Wl )k
l=1, that can appear withU in 2PP(u). EachWl is chosen

with the distribution induced by 2PP(u), i. e., the distribution of the pairU,Wl is the same as the
distribution ofU,W in 2PP(u).

3. V chooses 2k functions( fi)k
i=1 and( f ′j)

k
j=1 onU uniformly at random.

4. For eachl , 1≤ l ≤ k, V chooses two functionsgl andg′l onWl uniformly at random.

5. For each triplei, j, l such thati + j + l ≡ 0 modk define a functionhi jl by setting for eachy ∈
{−1,1}Wl , hi jl (y) = gl (y) fi(π(y))(g′l (y)∧ f ′j(π(y))).

6. V accepts iffBWl (hi jl ) = BWl (gl )AU( fi)(BWl (g
′
l )∧AU( f ′j)) for all i + j + l ≡ 0 modk.

We have the following theorem.

Theorem 3.3. The k-iterated almost disjoint sets test has completeness1 and soundness2−k2
+ dΩ(u)

c ,
where dc is the constant fromTheorem 2.1and u is the parameter of the underlying 2-prover protocol.
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Proof. The completeness follows from that of the basic test and we need to analyze the soundness. For
readability let us replaceAU by A andBWl by Bl . Let Z0 denote the set of all triples(i, j, l) such that
i + j + l ≡ 0(modk).

Let Acc(i, j, l) be a variable that indicates whether the test given by the triple(i, j, l) accepts, taking
the value 1 if it does and−1 otherwise. Clearly

Acc(i, j, l) = Bl (hi jl )Bl (gl )A( fi)(A( f ′j)∧Bl (g′l )) .

Consider

∏
(i, j,l)∈Z0

1+Acc(i, j, l)
2

= 2−k2 ∑
S⊆Z0

∏
(i, j,l)∈S

Acc(i, j, l) . (3.9)

This number equals 1 if the test accepts and is 0 otherwise and thus its expected value is the probability
that the test accepts. The term in the right hand side sum withS= /0 equals 1 and to establish the theorem
it is sufficient to establish that any other term is bounded bydΩ(u)

c . Let ΠS be the term corresponding to
S 6= /0 and letTS be the expectation ofΠS. We go on to establish strategies forP1 andP2 which makes
the verifier in 2PP(u) accept with probability|TS|O(1). This is clearly sufficient to establish the theorem.

Suppose without loss of generality that(k,k,k) ∈ Sand let us fix the values offi , i 6= k, f ′j , j 6= k and
(Wl ,gl ,g′l ) for l 6= k in such a way that the conditional expectation ofΠS remains at leastTS. As the sets
in Z0 only intersect in one point we can, up to a factor±1, writeΠS as

Acc(k,k,k) ∏
(k, j,l)∈S, j,l 6=k

Acc(k, j, l) ∏
(i,k,l)∈S,i,l 6=k

Acc(i,k, l) ∏
(i, j,k)∈S,i, j 6=k

Acc(i, j,k) (3.10)

as the rest of the variables are fixed. The three products of (3.10) can be written asA(1)( fk), A(2)( f ′k) and
B(1)(gk,g′k) respectively, for some Boolean functionsA(1), A(2) andB(1).

Expanding the definition of Acc(k,k,k) and usingx∧ y = 1+x+y−xy
2 for A( f ′k)∧Bk(g′k) we see that

(3.10) can be written as the sum of four terms of the form

Bk(hkkk)A′( fk)A′′( f ′k)C(gk,g
′
k) , (3.11)

each with a coefficient 1/2, for some Boolean functionsA′, A′′ andC closely related toA(1), A(2) and
B(1). To be more precise

A′( fk) = A( fk)A(1)( fk) ,

A′′( f ′k) = A(2)( f ′k) or A′′( f ′k) = A( f ′k)A
(2)( f ′k) ,

and
C(gk,g

′
k) = Bk(gk)B(1)(gk,g

′
k) or C(gk,g

′
k) = Bk(gk)Bk(g′k)B

(1)(gk,g
′
k) .

We want to prove that if the expectation of (3.10) is large then the proversP1 andP2 in the two prover
game can convince the verifier of that protocol to accept with high probability. To this end we use the
tables in the given PCP to construct strategies forP1 andP2. We need to be slightly careful since not
all derived tables can be used by a given prover as it might depend on information not available to this
particular prover.
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In the present situation the functionsA′ andA′′ depend only onU and the fixations made and hence
are available for playerP2 to design a strategy.Bk is the original long code onWk and hence is useful
for extracting a strategy forP1. FinallyC is a function that depends on bothU andWk and as this is not
fully known to eitherP1 or P2, C is not useful for designing strategies.

Since we only have one remaining object of each type, let us for readability discard the index replac-
ing fk by f , Wk by W, etc.

We now want to compute the expected value of (3.11) over random choices off , f ′, g and g′.
Expanding all factors exceptA′′( f ′) by the Fourier transform we get

∑
α,β ,γ,γ ′

Â′α B̂βĈγ,γ ′Ef , f ′,g,g′
[
χα( f )χβ (g f( f ′∧g′))χγ(g)χγ ′(g′)A′′( f ′)

]
. (3.12)

Taking the expectation overf we see, usingLemma 2.3, that any term withα 6= π2(β ) vanishes while
if we have equality the expectation is 1. Similarly, considering the expectation overg, we see that only
terms withβ = γ give a nonzero contribution. Finally, fixingf ′ and considering expectation overg′, we
see that only terms withγ ′ = β ∩π−1( f ′−1(−1)) remain nonzero.

This implies that (3.12) reduces to

EU,W, f ′

[
∑
β

Â′
π2(β )B̂βĈβ ,β∩π−1( f ′−1(−1))A

′′( f ′)

]
(3.13)

and, fixingU andW, let us estimate

Ef ′

[
∑
β

Â′
π2(β )B̂βĈβ ,β∩π−1( f ′−1(−1))A

′′( f ′)

]
. (3.14)

Towards this end we have

| Ef ′ [Ĉβ ,β∩π−1( f ′−1(−1))A
′′( f ′)] | ≤ Ef ′ [|Ĉβ ,β∩π−1( f ′−1(−1))|] ≤ (3.15)

2−|π(β )| ∑
α ′⊆π(β )

|Ĉβ ,β∩π−1(α ′)| ≤ 2−|π(β )|/2

(
∑

α ′⊆π(β )
Ĉ2

β ,β∩π−1(α ′)

)1/2

.

Substituting this estimate into (3.14) we get the upper estimate

∑
β

|Â′
π2(β )B̂β |2−|π(β )|/2

(
∑

α ′⊆π(β )
Ĉ2

β ,β∩π−1(α ′)

)1/2

(3.16)

and applying the Cauchy-Schwarz inequality overβ this is bounded by(
∑
β

B̂2
β
Â′2

π2(β )2
−|π(β )|

)1/2(
∑

β ,β1

Ĉ2
β ,β1

)1/2

≤

(
∑
β

B̂2
β
Â′2

π2(β )2
−|π(β )|

)1/2

, (3.17)
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which is our final upper bound for the absolute value of the expectation ofΠS whenU andW are fixed.
As E[X2]≥ E[X]2 we have

EU,W

[
∑
β

B̂2
β
Â′2

π2(β )2
−|π(β )|

]
≥ EU,W

[
|Ef , f ′,g,g′ [ΠS]|2

]
≥ EU,W

[
|Ef , f ′,g,g′ [ΠS]|

]2 ≥ E[ΠS]2 ≥ T2
S .

The rest of the proof now follows along the same lines as end of the proof for the basic test. In that
proof we had established that the right hand side of (3.6) was large and used this to derive strategies for
the provers. We now have proved that a very similar sum is large. The fact that we have replacedÂπ2(β )

by Â′2
π2(β ) is only to our advantage. AsA′ is a derived table we cannot make sure that it is folded over

true and thus whenP2 picksα with probabilityÂ′2α the setα might be empty. In this caseP2 might return
any assignment and we assume that the verifier rejects in this case. This does not disturb the analysis as
B is folded over true and hence|β | is odd which implies thatπ2(β ) is nonempty.

3.2.2 The bipartite graph test

In this section we study the following test.

k-iterated bipartite graph PCP

1. V choosesU as in 2PP(u).

2. V chooses independentlyk sets(Wl )k
l=1, that can appear withU in 2PP(u). EachWl is chosen

with the distribution induced by 2PP(u), i. e., the distribution of the pairU,Wl is the same as the
distribution ofU,W in 2PP(u).

3. V chooses 2k functions( fi)k
i=1 and( f ′i )

k
i=1 onU uniformly at random.

4. For eachl , 1≤ l ≤ k, V chooses two functionsgl andg′l onWl uniformly at random.

5. For each pairi, l define a functionhil by setting for eachy∈ {−1,1}Wl ,

hil (y) = gl (y) fi(π(y))(g′l (y)∧ f ′i (π(y))) .

6. V accepts iffBWl (hil ) = BWl (gl )AU( fi)(BWl (g
′
l )∧AU( f ′i )) for all 1≤ i, l ≤ k.

We have the following theorem.

Theorem 3.4. The bipartite graph test has completeness1 and soundness2−k2
+dΩ(u)

c .

Proof. The completeness is again not difficult and we leave it the reader to verify that indeedV always
accepts a correct proof for a correct statement.

In the analysis of the soundness let us use notation similar to the one used in the previous proof, e.g.,
writing Bl instead ofBWl andA instead ofAU . Also define

Acc(i, l) = Bl (hil )Bl (gl )A( fi)(A( f ′i )∧Bl (g′l )) ,
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which is 1 if the test involvinghil accepts and−1 if the test fails. Now we want to calculate the expected
value of

∏
(i,l)∈[k]×[k]

1+Acc(i, l)
2

= 2−k2 ∑
S⊆[k]×[k]

∏
(i,l)∈S

Acc(i, l) . (3.18)

Let TS be the expectation of the product forS and the goal is again to, for any nonempty setS, give a
prover-strategy with success rate|TS|O(1). We start by, as already done in [12], reducing to the case of
specialSand letT2d be the result whenS is the edge set of the complete bipartite graph on[2]× [d].

Lemma 3.5 ([12]). For any nonempty S, there is an integer d such that|TS| ≤ |T2d|1/2.

Proof. As all coordinates are treated symmetrically me may, without loss of generality, assume that
(1,1) ∈ Sand that(1,2), . . .(1,d) are the other vertices inSconnected to 1. Let us divide our random
choice of( fi , f ′i ,gl ,g′l )i,l=1,...,k into X given by choice of( f1, f ′1), andY given by choice of the rest. Let
S1 be the subset ofSgiven by(1,1),(1,2) . . .(1,d). Then

EX,Y[ ∏
(i,l)∈S

Acc(i, l)] = EX,Y[
d

∏
l=1

Acc(1, l) · ∏
(i,l)∈S\S1

Acc(i, l)] =

EX,Y[F(X,Y)G(Y)] = EY[EX[F(X,Y)]G(Y)]

for some functionsF andG with values in{−1,1}. Now applying the Cauchy-Schwarz inequality this
can be bounded by√

EY[(EX[F(X,Y)])2]
√

EY[G(Y)2] ≤
√

EY[(EX[F(X,Y)])2] =√
EY[EX1[F(X1,Y)] ·EX2[F(X2,Y)]] =

√
EX1,X2,Y[F(X1,Y) ·F(X2,Y)]

whereX1,X2 are identically distributed asX and are independent. The proof is completed by the obser-
vation thatF(X1,Y) ·F(X2,Y) is equal to∏d

l=1Acc(1, l) ·∏d
l=1Acc(2, l), which is exactly the same as

TS′ whereS′ is a complete bipartite graph on[2]× [d].

Thus it is sufficient to find a good strategy based on|T2d| being large. Using the definition of Acc
and canceling the factorsBl (gl ) that appears exactly twice, we have

T2d = E

[
d

∏
l=1

Bl (h1l )Bl (h2l )A( f1)A( f2)(A( f ′1)A( f ′2)∧Bl (g′l ))

]
. (3.19)

The functiongl affectsT2d only throughh1l andh2l and replacingBl (h1l ) andBl (h2l ) by their Fourier
expansions we see that

Egl [Bl (h1l )Bl (h2l )] = ∑
β1,β2

B̂l ,β1
B̂l ,β2

Egl [χβ1
(gl f1(g′l ∧ f ′1))χβ2

(gl f2(g′l ∧ f ′2))] =

∑
β

B̂2
l ,β χβ ( f1 f2)χβ ( f ′1 f ′2∧g′l ) . (3.20)
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Substituting this into (3.19) we get

E

[
d

∏
l=1

(
∑
βl

B̂2
l ,βl

χβl
( f1 f2)χβl

( f ′1 f ′2∧g′l )

)
A( f1)A( f2)((A( f ′1)A( f ′2))∧Bl (g′l ))

]
. (3.21)

Let us now consider the expectation overf1 and f2. If d is even then the dependence of (3.21) on f1
and f2 is of the form

d

∏
l=1

χβl
( f1 f2) .

which has expected value 0 unless⊕ jπ2(βl ) = /0 while the expectation is 1 if we have equality.
If d is odd, then the dependence off1 and f2 is of the form

A( f1)A( f2)
d

∏
l=1

χβl
( f1 f2) .

ReplacingA( f1) andA( f2) by their Fourier expansions we see that the expectation of this with respect
to f1 and f2 equalsÂ2

α where
α =⊕l π2(βl ) .

Now let us turn to analyzing the rest of (3.21). First note that

d

∏
l=1

(A( f ′1)A( f ′2)∧Bl (g′l )) = (A( f ′1)A( f ′2)∧
d

∏
l=1

Bl (g′l )) .

We have(x∧y) = 1+x+y−xy
2 and we are now ready to consider the expectation overf ′1 and f ′2 andg′l . We

have expressions of the form

(A( f ′1)A( f ′2))
a

d

∏
j=l

χβl
( f ′1 f ′2∧g′l )(

d

∏
l=1

Bl (g′l ))
b , (3.22)

for a,b∈ {0,1}. Now, view

C(g′1,g
′
2 . . .g′d) = (

d

∏
l=1

Bl (g′l ))
b

as a Boolean function with Fourier coefficientsĈγ1,γ2,....γd , and thus (3.22) equals

∑
γ1,γ2,...γl

(A( f ′1)A( f ′2))
aĈγ1,γ2,....γd

d

∏
j=l

χβl
( f ′1 f ′2∧g′l )χγl (g

′
l ) . (3.23)

Let α ′ = ∪d
l=1π(βl ). For a fixed choice off ′1 f ′2 = f ′ we get a nonzero expected value over(g′l )

d
l=1 iff

γl = βl ∩π−1( f ′−1(−1)) for all l , giving a unique non-zero term. Definingγ
~β , f ′

l to be this value we get∣∣∣∣∣Ef ′1, f
′
2,g

′
1,g

′
2,...g

′
d

[
(A( f ′1)A( f ′2))

a
d

∏
j=l

χβl
( f ′1 f ′2∧g′l )(

d

∏
l=1

Bl (g′l ))
b

]∣∣∣∣∣ ≤ (3.24)∣∣∣∣Ef ′1, f
′
2

[
Ĉ

γ
~β , f ′
1 ,γ

~β , f ′
2 ,....γ

~β , f ′
d

]∣∣∣∣ ≤ 2−|α
′|/2 , (3.25)
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where the last inequality follows from the Cauchy-Schwarz inequality using a similar calculation to that
in (3.5). This means that in the case whend is even we get the upper estimate

∑
⊕l π2(βl )= /0

d

∏
l=1

B̂2
l ,βl

2−|α
′|/2 (3.26)

for |T2d| while in the case whend is odd we get

∑ Â2
⊕l π2(βl )

d

∏
l=1

B̂2
l ,βl

2−|α
′|/2 , (3.27)

where in both cases we haveα ′ = ∪d
l=1π(βl ).

Strategies for the provers can now be defined as follows.P1 upon receivingW, picksβ with proba-
bility B̂2

β
and returns a randomy∈ β . P2 upon receivingU picksd−1 randomWl , l = 2. . .d and picks

β2, . . .βd with probability∏d
l=2 B̂2

l ,βl
and computesα ′′ = ⊕d

l=2π2(βl ). If d is evenP2 returns a random

x∈ α ′′. If d is oddP2 also picksα with probability Â2
α and returns a random element inα ′′⊕α. Note

that by folding, in both cases the defined set is of odd cardinality and hence is not empty.
The probability of success is, in the case of evend, at least

∑
⊕l π2(βl )= /0

d

∏
l=1

B̂2
l ,βl

(∑ |βl |)−1 (3.28)

and in the case of oddd it as at least

∑ Â2
⊕l π2(βl )

d

∏
l=1

B̂2
l ,βl

(∑ |βl |)−1 . (3.29)

Using (3.7) these probabilities can be related to expressions (3.26) and (3.27) in a way similar to the
basic proof case. We omit the details. The result is that the verifier in 2PP(u) accepts with probability
|T2d|O(1) and the theorem follows.

3.2.3 Adaptive tests

In this section we proveTheorem 1.4by defining a suitable adaptive test. The theorem then follows from
analyzing the completeness, which is done inLemma 3.6and the soundness which is done inLemma 3.7
Guruswami et al. [7] give an adaptive test reading three bits that has perfect completeness and soundness
1
2 + ε for anyε > 0. The non-adaptive version of this test has the same parameters except that it reads
4 bits. The natural iterated test based on this test reads 2k+k2 bits in the adaptive setting and 2k+2k2

bits in the non-adaptive setting. It has perfect completeness and it turns out that soundness is essentially
2−k2

also for this test.
Thus its parameters, when adaptive, are the same as those of the test of Samorodnitsky and Trevisan

while achieving perfect completeness. As sketched in [8], this test can be designed and analyzed with
the same basic two-prover protocol as the previous tests but the construction turns out to be technically
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simpler if we modify the two-prover protocol. We do this to obtain the property called “smoothness”
in [10]. We need that for two different answers byP1, with high probability the answers byP2 causing
acceptance are also different. This is achieved by sending a large number of identical clauses to both
provers.

u-parallel two-prover protocol with redundancy factor T, 2PPe(u,T )

1. V choosesTu clauses(Cki )
Tu
i=1 uniformly at random. Then he randomly selectsu clauses(Cj i )

u
i=1

out of theseTuclauses and randomly selects a variablex j i from each clausesCj i . He sends(ki)Tu
i=1

to proverP1; and to proverP2, he sends theu chosen variables(x j i )
u
i=1 together with the(T−1)u

clauses not selected.

2. V receives values for theu chosen variables(x j i )
u
i=1 from P2 as well as 3(T −1)u values for the

variables in the clauses sent toP2. V also receives 3Tuvalues fromP1 to the variables in the clauses
sent toP1. V accepts if no two values are inconsistent and all the picked clauses are satisfied.

We again call the sets of variables sent to the two proversU andW, respectively. Note that this time
U is of sizeu(3T −2) andW is of size 3uT while as before we haveU ⊂W. Note also that for each
fixed set of(T−1)u clauses sent to both players, we have an instance of the 2PP(u). This implies that
the soundness of 2PPe(u,T) is at most that of 2PP(u) and in particular it is upper bounded bydu

c .
We now describe the PCP. It depends on the parametersu andT but has also additional parameters

k andε. For notational convenience we suppress the former.

k-iterated non-adaptive PCP of biasε

1. V choosesU as in 2PPe(u,T).

2. V chooses independentlyk sets(Wj)k
j=1, that can appear withU in 2PPe(u,T). EachWj is chosen

with the distribution induced by 2PPe(u,T), i. e., the distribution of the pairU,Wj is the same as
the distribution ofU,W in 2PPe(u,T).

3. V choosesk functions( fi)k
i=1 onU uniformly at random and reads the bitsAU( fi).

4. For eachj, 1≤ j ≤ k, V chooses a functiong j on Wj uniformly at random and reads the bits
BWj (g j).

5. For each pairi, j define a functionhi j by setting, independently, for eachy∈ {−1,1}Wj , hi j (y) =
−1 with probability 1− ε and otherwisehi j (y) = 1.

6. For each pairi, j, if A( fi) = 1, V checks thatB j(g j( fi ∧hi j )) = B j(g j) and otherwiseV checks
thatB j(g j(− fi ∧hi j )) = B j(g j).

7. V accepts if all tests accept.

Completeness is straightforward.

Lemma 3.6. The adaptive k-iterated test with biasε, accepts with probability 1, i. e, it has perfect
completeness.
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Proof. Fix an i and aj. Suppose that we have a correct proof of a correct statement based on the global
assignmentz. If A( fi) = 1 then fi(πU(z)) = 1 and we have

B j(g j( fi ∧hi j )) = g j(πW(z))( fi(πU(z))∧hi j (πW(z))) = g j(πW(z)) = B j(g j) .

The caseA( fi) =−1 is similar.

We next turn to soundness.

Lemma 3.7. Suppose that T≥ ε−5 and we are given a proof that makes the verifier in the adaptive
iterated test with parameterε accept with probability2−k2

+ 2δ whereδ > 6ε. Then we can find
strategies for P1 and P2 in 2PPe(u,T) that makes the verifier of that protocol accept with probability
at leastε2(δ −6ε)2/2.

Proof. The proof follows along the same lines as the result for the protocol withk= 1 given in [7] which
in turn is based on the proof that 3SAT is inapproximable for satisfiable instances in [14].

Let

Acc(i, j) =
1
2

((1+A( fi))B j(g j)B j(g j( fi ∧hi j ))+(1−A( fi))B j(g j)B j(g j(− fi ∧hi j ))) ,

which is 1 if the test given by(i, j) accepts and−1 otherwise. We have an expansion like (3.18) and by
the assumption of the lemma implies that we have a nonemptySsuch that

E

[
∏

(i, j)∈S

Acc(i, j)

]
≥ 2δ . (3.30)

As all coordinates are symmetric we may assume that(1,1) ∈ S. Now fix the values ofg j and fi for
i, j ≥ 2 andhi j for (i, j) 6= (1,1) to any constants without decreasing the expected value obtaining

EU,W1, f1,g1,h11

[
Acc(1,1)A(1)( f1)B(1)(g1)

]
≥ 2δ (3.31)

for some Boolean functionsA(1) andB(1). Using the expression for Acc(1,1) we get an expression of
the form

A′( f1)B(g1( f1∧h11))C(g1) (3.32)

or

A′( f1)B(g1(− f1∧h11))C(g1) (3.33)

whose expectation over the choice ofU , f1, W1, g1 andh11 is at leastδ . HereA′, B andC are Boolean
functions whereB is the originalB1 andA′ is a function only depending onU . Since f is chosen with
the same distribution as− f we might as well study (3.32) and let us drop the subscripts for readability.
Replacing each function by its Fourier expansion, we get that the expectation of (3.32) equals

EU,W, f ,g,h

[
∑

α,β ,γ

Â′α B̂βĈγ χα( f )χβ (g( f ∧h))χγ(g)

]
. (3.34)
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Taking expectation overg we see that terms withβ 6= γ have expectation 0 and thus (3.34) equals

EU,W

[
∑
α,β

Â′α B̂βĈβ Ef ,h
[
χα( f )χβ (( f ∧h))

]]
. (3.35)

If α 6⊆ π(β ) the expectation overf yields 0 and thus we need to study

Ef ,h[χα( f )χβ ( f ∧h)] (3.36)

whereα ⊆ π(β ). Using the definition of the characters (3.36) equals

Ef ,h

[
∏
x∈α

(
f (x) ∏

y∈β∩π−1(x)
( f (x)∧h(y))

)
∏

x∈π(β )\α

(
∏

y∈β∩π−1(x)
( f (x)∧h(y))

)]
(3.37)

and as the differentx behave independently we can analyze each factor independently. We havef (x) = 1
with probability 1/2 and in this case

∏
y∈β∩π−1(x)

( f (x)∧h(y))) = 1 ,

while while if f (x) = −1, it has expectation overh that equals(2ε −1)sx wheresx = |π−1(x)∩β |. We
conclude that the expectation of (3.37) equals

∏
x∈α∩π(β )

(
1
2
(1− (2ε −1)sx)) ∏

x∈π(β )\α

(
1
2
(1+(2ε −1)sx)) ,

and defining this expression to bep(α,β ), we conclude that (3.35) equals

EU,W

[
∑

β ,α⊆π(β )
Â′α B̂βĈβ p(α,β )

]
. (3.38)

By assumption this expectation is at leastδ and we need to design strategies forP1 andP2.
The strategies of the two provers are the standard strategies. i. e.,P2 chooses anα with probability

Â′2α and returns a randomx ∈ α. Similarly P1 chooses a randomβ with probability B̂2
β

and returns a
randomy∈ β . Again A′ cannot be assumed to be folded as it is a derived table. Ifα is the empty set
we do not care whatP2 does and we assume in the analysis that the verifier rejects. The tableB, on the
other hand, is the original table and henceβ is nonempty and anyy∈ β satisfies the selected clauses.
We conclude that the strategy of the provers is successful with probability at least

EU,W

[
∑

β , /06=α⊆π(β )
Â′2α B̂2

β
|β |−1

]
. (3.39)

We need to prove that this is large based on (3.38) being at leastδ .
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First note that

∑
β

|B̂βĈβ | ≤

(
∑
β

B̂2
β

)1/2(
∑
β

Ĉ2
β

)1/2

≤ 1 , (3.40)

and the quantity that multiplieŝBβĈβ in (3.38) satisfies∣∣∣∣∣ ∑
α⊆π(β )

Â′α p(α,β )

∣∣∣∣∣ ≤

(
∑

α⊆π(β )
Â′2α

)1/2(
∑

α⊆π(β )
p2(α,β )

)1/2

≤

(
∑

α⊆π(β )
p2(α,β )

)1/2

≤ (1− ε)|π(β )|/2 . (3.41)

To see the last inequality in (3.41) note that the sum equals

∏
x∈π(β )

((
1
2
(1− (2ε −1)sx)

)2

+
(

1
2
(1+(2ε −1)sx)

)2
)

. (3.42)

The factor corresponding tox in (3.42) is of the forma2+b2 where|a|+ |b|= 1 and max(|a|, |b|)≤ 1−ε,
and hence it is bounded by(1− ε) and this gives the bound.

Our redesigned two-prover protocol enables us to control the size of projections nicely.

Lemma 3.8. For any fixed W andβ we have

PrU [|π(β )|< |β |] < |β |2

2T
. (3.43)

Proof. For the event in (3.43) to happen there must be two different elements ofβ that project to the
same element. There are at most|β |2/2 pairs and the probability that any pair project to the same
element is at most 1/T. This follows since two different elements differ in at least one coordinate and
the probability that a given coordinate does not appear inU is bounded above by 1/T. The lemma
follows from the union bound.

Let us return to (3.38) and consider the terms corresponding to a fixedβ . If |β | ≥ 2ε−2 then using
Lemma 3.8, we see, asT ≥ ε−5, that except with probability 2ε we have|π(β )| ≥ 2ε−2 in which case
(3.41) is bounded by

(1− ε)ε−2 ≤ eε−1 ≤ ε .

We conclude that

EU,W

[
∑

|β |≥2ε−2,α⊆π(β )

Â′α B̂βĈβ p(α,β )

]
≤ EU,W

[
∑

|β |≥2ε−2

B̂βĈβ (Pr[|π(β )| ≤ 2ε
−1]+ ε)

]
≤ 3ε. (3.44)

It follows that

EU,W

[
∑

|β |≤2ε−2,α⊆π(β )
Â′α B̂βĈβ p(α,β )

]
≥ δ −3ε , (3.45)
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and we want to bound the contribution fromα = /0. Note that if|β | ≤ 2ε−2 then, byLemma 3.8, except
with probability 2ε eachsx is one. In this case

p( /0,β ) = ε
|β | ≤ ε

and we conclude that the total expectation of terms containingα = /0 is at most 3ε and hence we have

EU,W

[
∑

|β |≤2ε−2, /06=α⊆π(β )
Â′α B̂βĈβ p(α,β )

]
≥ δ −6ε . (3.46)

Returning to (3.39) we see that the provers are successful with with probability at least

ε2

2
EU,W

[
∑

β , /06=α⊆π(β ),|β |≤2ε−2

Â′2α B̂2
β

]
.

Now by the above reasoning we have the following chain of equalities, where all sums are over the set

{β , /0 6= α ⊆ π(β ), |β | ≤ 2ε
−2} :

(δ −6ε)2 ≤
(
EU,W

[
∑ Â′α B̂βĈβ p(α,β )

])2 ≤ EU,W

[(
∑ Â′α B̂βĈβ p(α,β )

)2
]
≤

EU,W

[(
∑ Â′2α B̂2

β

)(
∑Ĉ2

β
p2(α,β )

)]
≤ EU,W

[
∑ Â′2α B̂2

β

]
,

where the last inequality follows from

∑
β

∑
α⊆β

Ĉ2
β

p2(α,β )≤∑
β

Ĉ2
β
≤ 1 ,

where we again used the last inequality of (3.41). We conclude that the verifier in the two-prover protocol
accepts with the given strategies with probability at leastε2(δ −6ε)2/2 and the proof is complete.

4 The case of larger domains

In this section we proveTheorem 1.5. This is done by a natural extension of the protocols from the
previous sections. Before we present our protocols we give some definitions and recall some background
results.

4.1 Background in the large domain case

Let Zp denote the multiplicative group given by thepth roots of unity. Letζ = e2π i/p be the basicpth

root of unity. To generalize the Boolean∧ we define an operation mult( , ) as:

mult(ζ i ,ζ j) = ζ
i j .

We have the following useful lemma
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Lemma 4.1. If x and y are pth roots of unity, we have

mult(x,y) =
1
p

p−1

∑
i=0

p−1

∑
j=0

xiy j
ζ
−i j .

Proof. Supposey = ζ i0. Fix i and consider the inner sum. Fori 6= i0 the value is 0 while fori = i0 it is
p. This implies that the total sum equalsxi0 which is in fact mult(x,y).

We define longp codes as the natural extension of the long code. Positions are indexed by functions
f : {−1,1}t → Zp and in the code forx this position takes valuef (x).

Let A be a table containing a valueA( f ) ∈ Zp for every functionf : {−1,1}t → Zp. We make the
following definitions for such a table.

Definition 4.2. A tableA is folded over true ifA(ζ a f ) = ζ aA( f ), for 0≤ a≤ p−1 and all f .

Definition 4.3. A tableA respects exponentiation ifA( f a) = A( f )a for 0≤ a≤ p−1 and all f .

Definition 4.4. A tableA is conditioned upon a functionh : {−1,1}t →{1,ζ} (1 represents false andζ
represents true), ifA( f ) = A(mult( f ,h)) for all f .

Now we briefly explain Fourier analysis of longp-codes. For every functionα : {−1,1}t →GF(p),
whereGF(p) is represented by{0,1, . . . p−1}, there is a characterχα defined as

χα( f ) = ∏
x∈{−1,1}t

f (x)α(x) .

Note thatα is a “function” rather than a “set” as in binary case and that the transform takes complex
values. We denote byN(α) the set on whichα takes nonzero values i. e.,

N(α) = {x|α(x) 6= 0} .

Every tableA can be written asA( f ) = ∑α Âα χα( f ) with ∑α |Âα |2 = 1. We can assume that tables are
folded or conditioned upon a given function by using appropriate access mechanisms. Following are
easy consequences of folding and conditioning.

Lemma 4.5. If A is folded over true and̂Aα 6= 0, then∑x∈{−1,1}t α(x) = 1 modp. In particular N(α)
is a nonempty set.

Lemma 4.6. If A is conditioned upon a function h: {−1,1}t → {1,ζ} and Âα 6= 0, then for every
x∈ N(α), h(x) is true, i. e., h(x) = ζ .

In this section our numbers are elements of the number fieldQ(ζ ), the rational numbers with the
pth root of unity added. We use the homomorphismσa, 0≤ a ≤ p− 1 which has the property that
σa(ζ i) = ζ ia. Forx a pth root of unity we haveσa(x) = xa but this is not true in general.

We have the following straightforward lemma of which we omit the proof.
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Lemma 4.7. For x 6= 1 a pth root of unity we have

p−1

∑
a=0

σa(x) = 0 .

Finally define
πp(β )(x) = ∑

y∈π−1(x)
β (y) mod p

as the generalization ofπ2. Lemma 2.8generalizes.

Lemma 4.8. Let β ⊆ {−1,1}W, U ⊆W and f : {−1,1}U → Zp. Then

χβ ( f ) = χπp(β )( f ) .

4.2 The basic test

We first define the basic test which is completely analogous to the binary case. We assume that tables
A,B are folded over true and respect exponentiation. The tableB (supposed longp-code onW) is
conditioned upon the CNF formulaϕW.

Basic mod-p PCP

1. V choosesU , W andϕW as in 2PP(u).

2. V chooses two functionsf and f ′ onU , taking values inZp uniformly at random.

3. V chooses two random functionsg andg′ onW taking values inZp uniformly at random.V defines
a third functionh by setting for eachy∈ {−1,1}W, h(y) = g(y) f (π(y)) mult(g′(y), f ′(π(y))).

4. V accepts iffB(h) = B(g)A( f ) mult(B(g′),A( f ′)).

Obviously the completeness of the basic test is 1 and we turn to the soundness.

Lemma 4.9. If the verifier in the basic test accepts with probability(1+δ )/p then there exists a strategy
for P1 and P2 in 2PP(u) that makes the verifier accept with probability p−O(1)δ O(1).

First note that
B(h)−1B(g)A( f ) mult(B(g′),A( f ′))

is a pth root of unity which is 1 iff the test accepts.
This implies, under the hypothesis of the lemma and usingLemma 4.7, that

EU,W, f , f ′,g,g′ [
p−1

∑
a=1

σa(B(h)−1B(g)A( f ) mult(B(g′),A( f ′)))] = δ .

UsingLemma 4.1and the fact that our tables respect exponentiation we see that

EU,W, f , f ′,g,g′ [
p−1

∑
b=0

p−1

∑
c=0

p−1

∑
a=1

B(h)−aB(ga)A( f a)B(g′ab)A( f ′ac)ζ−bc] = pδ .
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We conclude that there must be some value of(a,b,c) such that

|EU,W, f , f ′,g,g′ [B(h)−aB(ga)A( f a)B(g′ab),A( f ′ac)]| ≥ p−2
δ . (4.1)

Replacing(h,g, f ,g′, f ′) by (ha,ga, f a,g′a, f ′) preserves probability and hence changing the value ofc,
we can without loss of generality assume thata = 1.

Fix U,W, f ′ andg′ and let us study

Ef ,g[B(h−1)B(g)A( f )] . (4.2)

Replacing each function by its Fourier expansion we see that this equals

∑
β1,β2,α

B̂β1
B̂β2

ÂαEf ,g[χβ1
( f−1g−1mult( f ′,g′)−1)χβ2

(g)χα( f )] .

The inner expected value is 0 unlessβ1 = β2 andπp(β1) = α and hence (4.2) equals

∑
β

B̂2
β
Âπp(β )χβ (mult( f ′,g′)−1) . (4.3)

Returning to (4.1) we need to analyze

Ef ′,g′ [χβ (mult( f ′,g′)−1)B(g′b)A( f ′c)] . (4.4)

Fix the value off ′. Whenb = 0, averaging overg′ gives 0 unlessf ′(π(z)) = 1 for all z∈ N(β ). The
probability of picking such anf ′ is p−|π(N(β ))|. Now consider the case whenb 6= 0. Defineβ ′ as follows:
for everyy, β ′(y) = b−1e(y)β (y) where f ′(π(y)) = ζ e(y). Averaging (4.4) overg′ yieldsB̂β ′A( f ′c).

We note thatf ′s which are different onπ(N(β )) give differentβ ′. Let ∆β be the set of all possible
β ′. We have|∆β |= p|π(N(β ))| and over all the choices off ′, everyβ ′ ∈ ∆β occurs equally often. Using
this observation and applying the Cauchy-Schwarz inequality gives

| Ef ′ [B̂β ′A( f ′c)] | ≤ Ef ′ [|B̂β ′ |] = p−|π(N(β ))| ∑
β ′∈∆β

|B̂β ′ | ≤

p−|π(N(β ))|/2

 ∑
β ′∈∆β

|B̂β ′ |2
1/2

≤ p−|π(N(β ))|/2 .

This implies that we get an overall upper bound on the expectation of (4.1) as

EU,W

[
∑
β

|B̂β |2 |Âπp(β )| p−|π(N(β ))|/2

]
.

Now we can extract prover strategies in a similar way as in the proof ofLemma 3.2, making use of
(3.7). A minor difference is that nowα ( β ) are functions and not sets. The provers pickα ( β ) with
probabilityÂ2

α ( B̂2
β

) and pick a randomx∈ N(α) (a randomy∈ N(β ) ).
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4.2.1 Iterated tests

The basic test in the previous section can be iterated in a way similar to theSection3.2. We have only
attempted the simpler analysis of almost disjoint sets and this is what we present here.

4.2.2 The almost disjoint sets test

We first define the test which is an iteration of the basic test studied in the last section.

k-iterated mod-p almost disjoint sets PCP

1. V choosesU as in 2PP(u).

2. V chooses independentlyk sets(Wl )k
l=1, that can appear withU in 2PP(u). EachWl is chosen

with the distribution induced by 2PP(u), i. e., the distribution of the pairU,Wl is the same as the
distribution ofU,W in 2PP(u).

3. V chooses 2k functions( fi)k
i=1 and( f ′j)

k
j=1 onU taking values inZp uniformly at random.

4. For eachl , 1≤ l ≤ k, V chooses two functionsgl andg′l onWl taking values inZp uniformly at
random.

5. For each triplei, j, l such thati + j + l ≡ 0 modk define a functionhi jl by setting for eachy ∈
{−1,1}Wl , hi jl (y) = gl (y) fi(π(y))mult(g′l (y), f ′j(π(y))).

6. V accepts iffBWl (hi jl ) = BWl (gl )AU( fi)mult(BWl (g
′
l ),AU( f ′j)) for all i + j + l ≡ 0 modk.

We have the following theorem.

Theorem 4.10.The almost disjoint sets test inZp has completeness1 and soundness p−k2
+ pO(1)dΩ(u)

c ,
where dc is the constant fromTheorem 2.1.

Proof. The completeness is obvious and we need to analyze the soundness. To this end let

Acc(i, j, l) = Bl (hi jl )−1Bl (gl )A( fi) mult(A( f ′j),Bl (g′l )) ,

which is 1 if the test associated with(i, j, l) accepts and otherwise it is a differentpth root of unity.
Let Z0 be the set of all triples(i, j, l) with i + j + l ≡ 0( mod k) and letS∈ GF(p)k2

be a vector
whose coordinates are indexed by the triples inZ0. We have

∏
(i, j,l)∈Z0

∑p−1
a=0(Acc(i, j, l))a

p
= p−k2 ∑

S∈GF(p)k2
∏

(i, j,l)∈Z0

(Acc(i, j, l))S(i, j,l) .

By Lemma 4.7this expression equals 1 if the test accepts and is 0 otherwise and thus its expected value
is the probability that the test accepts. The term withS≡ 0 is 1 and to establish the theorem it is sufficient
to establish that any term withS 6≡ 0 is upper bounded above bypO(1)dΩ(u)

c . Let TS be the expected value
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of the term corresponding toS. We go on to establish a strategy forP1 andP2 which makes the verifier
in 2PP(u) accept with probabilityp−O(1)|TS|O(1).

Suppose without loss of generality thatS(k,k,k) = r 6= 0 and fix the values offi , i 6= k, f j , j 6= k and
(Wl ,gl ,g′l ) for l 6= k in such a way as not to decrease|TS|. Since we only have one remaining function of
each type let us for readability discard the index.

By Lemma 4.1and from the fact that any other triple intersects with the given triple in at most one
place we conclude thatTS, after the above fixings, can be written as the sum ofp2 terms of the form

B(h)−rA′( f )A′′( f ′)C(g,g′) , (4.5)

each with a coefficient of complex absolute value 1/p. HereA′, A′′, B, andC takes values which arepth

roots of unity. We conclude that there is such an expression of the form (4.5) whose expectation over
U,W,h, f , f ′,g, andg′ is at least|TS|/p.

HereA′ andA′′ are functions that only depend onU and hence might be used to extract strategy for
P2. B is the original longp-code onW = Wk and hence is useful for extracting strategy forP1.

We now want to compute the expected value of this expression over random choices off , f ′, g and
g′. Expanding all factors exceptA′′( f ′) by the Fourier transform we get

∑
α,β ,γ,γ ′

Â′α B̂βĈγ,γ ′E[χα( f )χ−rβ (g f mult( f ′,g′))χγ(g)χγ ′(g′)A′′( f ′)] . (4.6)

Now taking the expected value overf we see that unlessα = rπp(β ) the term is 0. Similarly we need
γ = rβ . Fix f ′ and defineβ ′ as follows: for everyy, β ′(y) = re(y)β (y) where f ′(π(y)) = ζ e(y). With
this definition, we have

χ−rβ (mult( f ′,g′)) = χ−β ′(g′) .

Thus unlessγ ′ = β ′, the expectation is 0. Thus (4.6) equals

∑
β

Â′rπp(β )B̂βĈβ ,β ′A′′( f ′) . (4.7)

Note thatβ ′ is uniquely determined byβ and f ′ and functionsf ′ which are different onπ(N(β )) give
differentβ ′s. Let∆β be the set of all possibleβ ′s. We have|∆β |= p|π(N(β ))| and over all the choices of
f ′, everyβ ′ ∈ ∆β occurs equally often. This implies that

| Ef ′ [Ĉβ ,β ′(β , f ′)A
′′( f ′)] | ≤ Ef ′ [|Ĉβ ,β ′(β , f ′)|] ≤ (4.8)

p−|π(N(β ))| ∑
β ′∈∆β

|Ĉβ ,β ′ | ≤ p−|π(N(β ))|/2( ∑
β ′∈∆β

|Ĉβ ,β ′ |2)1/2 .

Substituting this estimate into (4.7) and using the Cauchy-Schwarz inequality overβ we get the upper
estimate(

∑
β

|B̂β |2|Â′rπp(β )|
2p−|π(N(β ))|

)1/2
 ∑

β ,β ′∈∆β

|Ĉβ ,β ′ |2
1/2

≤

(
∑
β

|B̂β |2|Â′rπp(β )|
2p−|π(N(β ))|

)1/2

for |TS|/p. The same strategy as defined in the basic test now makes the verifier accept in 2PP(u) with
probability p−O(1)|TS|O(1) and the theorem follows.
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5 Conclusions

We have established that the query efficient test of Samorodnitsky and Trevisan can be extended to
include perfect completeness in several different ways. The tests are simple and the analyses are only
moderately complicated, in particular the proofs using the approach of [15] are fairly straightforward.

All this taken together gives us good hope that, in the not too distant future, we will see more
powerful PCPs with even more applications to inapproximability of NP-hard optimization problems.
In particular the fact that we can include perfect completeness gives hope that stronger lower bounds
for coloring of graphs of small chromatic number could be possible. Clearly, to obtain such results,
obstacles of other nature need also be overcome. We note that some progress for constant colorable
graphs has already occurred [9], but getting strong results for 3-colorable graphs seems to require new
ideas.
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