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Abstract: We give a general method for proving quantum lower bounds for problems
with small range. Namely, we show that, for any symmetric problem defined on functions
f : {1, . . . ,N} → {1, . . . ,M}, its polynomial degree is the same for allM ≥ N. Therefore,
if we have a quantum query lower bound for some (possibly quite large) rangeM which
is shown using the polynomials method, we immediately get the same lower bound for
all rangesM ≥ N. In particular, we getΩ(N1/3) andΩ(N2/3) quantum lower bounds for
collision and element distinctness with small range, respectively. As a corollary, we obtain
a better lower bound on the polynomial degree of the two-level AND–OR tree.
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1 Introduction

Quantum computing provides speedups for many search problems. The most famous example is Grover’s
algorithm [14], which computes OR ofN variables withO(

√
N) queries. Other examples include

counting [8], estimating mean and median [15, 19], finding collisions [7], determining element dis-
tinctness [11, 5], finding triangles in a graph [18] and verifying matrix products [12]. For many of these
problems, we can also prove that known quantum algorithms are optimal or nearly optimal.
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In at least two cases, the lower bounds match the best known algorithm only with an additional “large
range” assumption. For example, consider the collision problem [7, 2] which models collision-free hash
functions. We have to distinguish if a functionf : {1, . . . ,N}→ {1, . . . ,M} is one-to-one or two-to-one.
A quantum algorithm can solve the problem withO(N1/3) queries (evaluations off ) [7], which is better
than theΘ(N1/2) queries required classically. A lower bound by Aaronson and Shi [2] says thatΩ(N1/3)
quantum queries are required ifM ≥ 3N/2. If M = N, the lower bound becomesΩ(N1/4).

A similar problem exists for element distinctness. (Again, we are givenf : {1, . . . ,N}→ {1, . . . ,M}
but f can be arbitrary and we have to determine if there arei, j, i 6= j, f (i) = f ( j).) If M = Ω(N2), the
lower bound isΩ(N2/3) [2], which matches the best algorithm [5]. But, if M = N, the lower bound is
only Ω(

√
N) or Ω(

√
N logN), depending on the model [11, 16].

Thus, it might be possible that a quantum algorithm could use the smallM to decrease the num-
ber of queries. While unlikely, this cannot be ruled out. Remember that classically, sorting requires
Ω(N log2N) steps in the general case but onlyO(N) steps if the items to be sorted are all from the set
{1, . . . ,N} (Bucket Sort, [13]).

In this paper, we show that the collision and element distinctness problems requireΩ(N2/3) and
Ω(N1/3) queries even if the rangeM is equal toN. Our result follows from a general result on the
polynomial degree of Boolean functions.

We show that, for any symmetric propertyφ of functions f : {1,2, . . . ,N}→ {1,2, . . . ,M}, its poly-
nomial degree is the same for allM ≥ N. The polynomial degree ofφ provides a lower bound for both
classical and quantum query complexity. (This was first shown by Nisan and Szegedy [20] in the clas-
sical case and then extended to the quantum case by Beals et al. [6] for M = 2 and Aaronson [1, 2] for
M > 2.) Thus, one can prove lower bounds on quantum query complexity of a functionφ by lower-
bounding the polynomial degree ofφ . This is known as thepolynomials methodfor proving quantum
lower bounds [6, 10, 2].

Our result means that, if we have a quantum lower bound for a symmetric propertyφ shown by the
polynomials method for some range sizeM, we also have the same quantum lower bound for allM ≥N.
As particular cases, we get lower bounds on the collision and element distinctness problems with small
range. Since many quantum lower bounds are shown using the polynomials method, our result may have
other applications.

A corollary of our lower bound on element distinctness with small range is that the polynomial
degree of the two-level AND–OR tree onN2 variables isΩ(N2/3). This improves over the previously
known lower bound ofΩ(

√
N logN) by Shi [21].

Related work. TheΩ(N1/3) lower bound for the collision problem with small range was indepen-
dently discovered by the author of this paper and Kutin [17], at about the same time, with completely
different proofs. Kutin [17] takes the proof of theΩ(N1/3) lower bound for the collision problem with
a large range [2] and changes it so that it works for allM ≥ N. Our result is more general because it
applies to any symmetric property and any lower bound shown by the polynomials method. On the other
hand, Kutin’s proof has the advantage that it also simplifies the lower bound for the collision problem
with large range by Aaronson and Shi [2].
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2 Preliminaries

2.1 Quantum query model

Let [k] denote the set{1, . . . ,k}. Let F(N,M) be the set of allf : [N] → [M]. We are given a function
f ∈ F(N,M) by an oracle that answers queries. In one query, we can givei to the oracle and it returns
f (i) to us.

We would like to know whetherf has a certain property (for example, whetherf is one-to-one).
More formally, we would like to compute a partial functionφ : F′ → {0,1}, whereF′ ⊆ F(N,M). In
particular, we are interested in the following two properties:

Problem 1: Collision. φ( f ) = 1 if the input functionf is one-to-one.φ( f ) = 0 if f is two-to-one
(i.e., if, for everyk∈ [M], there are either zero or twox∈ [N] satisfying f (x) = k). φ( f ) is undefined for
all other f .

Problem 2: Element distinctness.φ( f ) = 1 if the input functionf is one-to-one.φ( f ) = 0 if there
exist i, j, i 6= j, f (i) = f ( j).

A quantum algorithm withT queries is a sequence of unitary transformations

U0 → Of →U1 → Of → ··· →UT−1 → Of →UT .

TheU j ’s can be arbitrary unitary transformations that do not depend onf (1), . . . , f (N). Of is a query
(oracle) transformation. To defineOf , we represent basis states as|i,b,z〉 wherei consists ofdlogNe
bits,b is dlogMe bits andz consists of all other bits. Then,Of maps|i,b,z〉 to |i,(b+ f (i)) modM,z〉.

The computation starts with a state|0〉. Then, we applyU0, Of , . . ., Of , UT and measure the final
state. The result of the computation is the rightmost bit of the state obtained by the measurement.

The quantum algorithm computesφ with errorε if, for every f ∈ F(N,M) such thatφ( f ) is defined,
the probability that the rightmost bit ofUTOfUT−1 · · ·OfU0|0〉 equalsφ( f ) is at least 1−ε. (Throughout
this paper,ε is an arbitrary but fixed value, with 0< ε < 1/2.)

2.2 Polynomial lower bound

We can describe a functionf : [N]→ [M] by N×M Boolean variablesyi j which are 1 if f (i) = j and 0
otherwise. Lety = (y11, . . . ,yNM).

Definition 2.1. We say that a polynomialP ε-approximates the propertyφ if

1. φ( f ) = 1 implies 1− ε ≤ P(y)≤ 1 for y = (y11, . . . ,yNM) corresponding tof ;

2. φ( f ) = 0 implies 0≤ P(y)≤ ε for y = (y11, . . . ,yNM) corresponding tof ;

3. If φ( f ) is undefined, then 0≤ P(y)≤ 1 for the correspondingy.

A polynomialP approximatesf if it ε-approximatesf for some fixedε < 1/2.

The polynomialP is allowed to take any value ify does not correspond to anyf . (This happens if
for somei ∈ [N] there is no or there is more than onej ∈ [M] with yi j = 1.)
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Lemma 2.2. [1, 2] If a quantum algorithm computesφ with error ε using T queries then there is a
polynomial P(y11, . . . ,yNM) of degree at most2T thatε-approximatesφ .

A lower bound on the number of queries can be then shown by proving that such a polynomialP
does not exist. For the collision and element distinctness problems, we have

Theorem 2.3. [22, 2]

1. If a polynomial P approximates the collision property for M≥ 3N
2 , the degree of P isΩ(N1/3);

2. If a polynomial P approximates the element distinctness property for M= Ω(N2), the degree of P
is Ω(N2/3);

Note. More precisely, Shi [22, 2] proved that any polynomial approximating another problem, the
half two-to-oneproblem, has degreeΩ(N1/3). He then used that to deduce thatΩ(N1/3) andΩ(N2/3)
quantum queries are needed for the collision problem (whenM ≥ 3N

2 ) and the element distinctness
problem (whenM = Ω(N2)). His proof can be easily modified to show a lower bound on the degree of
polynomials approximating the collision and element distinctness problems.

By Theorem2.3, Ω(N1/3) and Ω(N2/3) queries are required to solve the collision problem and
element distinctness problem if the rangeM is sufficiently large. Previously, only weaker lower bounds
of Ω(N1/4) [2] andΩ(

√
N logN) [16] were known ifM = N.

3 Results

We call a propertyφ symmetricif, for any π ∈ SN andσ ∈ SM,

φ( f ) = φ(σ f π).

That is,φ( f ) should remain the same if we permute the input set{1, . . . ,N} before applyingf or permute
the output set{1, . . . ,M} after applyingf . The collision and element distinctness properties are both
symmetric.

Our main result is

Theorem 3.1. Let φ : F′ → {0,1} be a symmetric property defined on a set of functionsF′ ⊆ F(N,M).
Letφ ′ be the restriction ofφ to f : [N]→ [N]. Then, the minimum degree of a polynomial (in yi j , i ∈ [N],
j ∈ [M]) approximatingφ is equal to the minimum degree of a polynomial (in yi j , i ∈ [N], j ∈ [N])
approximatingφ ′.

Theorems2.3and3.1imply thatΩ(N1/3) andΩ(N2/3) queries are needed to solve the collision and
element distinctness problems, even ifM = N. (ForM < N, these problems do not make sense because
they both involvef being one-to-one as one of the cases.)

The proof ofTheorem 3.1is in two steps.

1. We describe a different way to describe an input functionf by variablesz1, . . ., zM instead of
y11, . . . ,yNM. We prove that a polynomial of degreek in z1, . . ., zM exists if and only if a polynomial
of degreek in y11, . . ., yNM exists.
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2. We show that a polynomialQ(z1, . . . ,zM) for M > N exists if and onlyQ(z1, . . . ,zN) exists.

The first step can be useful on its own. The representation off by y11, . . ., yNM gave the lower bounds
of [2]. The new representation byz1, . . ., zN might yield new lower bounds that are easier to prove using
this approach.

3.1 New polynomial representation

We introduce variablesz1, . . ., zM, with zj = | f−1( j)| (equivalently,zj = |{i | yi j = 1}|). We say that
a polynomialQ in z1, . . . ,zM approximatesφ if it satisfies requirements similar toDefinition 2.1. (Q∈
[1− ε,1] if φ( f ) = 1, Q∈ [0,ε] if φ( f ) = 0, andQ∈ [0,1] if z1, . . . ,zM correspond tof ∈ F(N,M) for
which φ( f ) is not defined.)

Example 3.2. A polynomialQ(z1, . . . ,zM) approximates the collision property if:

1. Q(z1, . . . ,zM) ∈ [1− ε,1] if N of the variablesz1, . . ., zM are 1 and the remainingM−N variables
are 0;

2. Q(z1, . . . ,zM) ∈ [0,ε] if N
2 of the variablesz1, . . ., zM are 2 and the remainingM− N

2 variables are
0;

3. Q(z1, . . . ,zM) ∈ [0,1] if z1, . . . ,zM are non-negative integers andz1 + · · ·+zM = N.

Example 3.3. A polynomialQ(z1, . . . ,zM) approximates element distinctness if:

1. Q(z1, . . . ,zM) ∈ [1− ε,1] if N of the variablesz1, . . ., zM are 1 and the remainingM−N variables
are 0;

2. Q(z1, . . . ,zM)∈ [0,ε] if z1, . . . ,zM are non-negative integers,z1+ · · ·+zM = N, andzi > 1 for some
i.

In both cases, there is no restriction onQ(z1, . . . ,zM) whenz1 + · · ·+ zM 6= N because suchz1, . . .,
zM do not correspond to anyf : [N]→ [M].

Lemma 3.4. Let φ : F′ → {0,1}, F′ ⊆ F(N,M) be symmetric. Then, the following two statements are
equivalent:

(1) There exists a polynomial Q of degree at most k in z1, . . . ,zM approximatingφ ;

(2) There exists a polynomial P of degree at most k in y11, . . ., yNM approximatingφ .

Proof. To see that (1) implies (2), we substitutezj = y1 j +y2 j + . . .+yN j into Q and obtain a polynomial
in yi j with the same approximation properties. Next, we show that (2) implies (1).

Let P(y11, . . . ,yNM) be a polynomial approximatingφ . We defineQ(z1, . . . ,zM) as follows. LetS
be the set of ally = (y11, . . . ,yNM) corresponding to functionsf : [N] → [M] with the property that,
for every i ∈ [M] the number ofj with f ( j) = i is exactlyzi . We defineQ(z1, . . . ,zM) as the expecta-
tion of P(y11, . . . ,yNM) wheny = (y11, . . . ,yNM) is picked uniformly at random fromS. (An equivalent
way to defineQ is to fix one functionf with this property and to defineQ as the expectation of of
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P(y11, . . . ,yNM), for y = (y11, . . . ,yNM) corresponding to the functionf π, with π being a random ele-
ment ofSN.)

Sinceφ is symmetric, we haveφ( f ) = φ( f π). Therefore, ifP(y11, . . . ,yNM) approximatesφ , then
Q(z1, . . . ,zM) also approximatesφ .

It remains to prove thatQ is a polynomial of degree at mostk in z1, . . . ,zM. Let

I = yi1 j1yi2 j2 · · ·yik jk

be a monomial ofP. It suffices to prove that eachE[I ] is a polynomial of degree at mostk becauseE[P]
is the sum ofE[I ] over allI .

We can assume thati` for ` ∈ {1, . . . ,k} are all distinct. (If the monomialI contains two variablesyi j

with the samei, j, one of them is redundant becausey2
i j = yi j . If I containsyi j , yi j ′ , j 6= j ′, thenyi j yi j ′ = 0

becausef (i) cannot be equalj and j ′ at the same time. Then,I = 0.) We have

E[I ] = Pr[yi1 j1 = 1]
k

∏̀
=2

Pr
[
yi` j` = 1 | yi1 j1 · · ·yi`−1 j`−1 = 1

]
.

There areN variablesyi j1. Out of them,zj1 variables are equal to 1 and eachyi j1 is equally likely to be
1. Therefore,

Pr[yi1 j1 = 1] =
zj1

N
.

Furthermore, lets̀ be the number of̀′ < ` such thatj` = j`′ . Then,

Pr
[
yi` j` = 1 | yi1 j1 · · ·yi`−1 j`−1 = 1

]
=

zj` − s̀

N− `−1

because, once we have setyi1 j1 = 1, . . ., yi`−1 j`−1 = 1, we have also set all otheryi1 j , . . ., yi`−1 j to 0. Then,
we haveN− `−1 variablesyi j ` which are not set yet and, out of them,zj` − s̀ must be 1.

Therefore,E[I ] is a product ofk terms, each of which is a linear function ofz1, . . . ,zM. This means
thatE[I ] is a polynomial inz1, . . . ,zM of degreek. This completes the proof of the lemma.

3.2 Lower bound for properties with small range

We now finish the proof ofTheorem 3.1. Obviously, the minimum degree of a polynomial approximating
φ ′ is at most the minimum degree of a polynomial approximatingφ (because we can take a polynomial
approximatingφ and obtain a polynomial approximatingφ ′ by restricting it to variablesyi j , j ∈ [N]).
In the other direction, we can take a polynomialP′ approximatingφ ′ and obtain a polynomialQ′ in
z1, . . . ,zN approximatingφ ′ by Lemma 3.4. We then construct a polynomialQ in z1, . . . ,zM of the same
degree approximatingφ . After that, usingLemma 3.4in the other direction gives us a polynomialP in
y11, . . . ,yNM approximatingφ .

It remains to constructQ from Q′. For that, we can assume thatQ′ is symmetric w.r.t. permuting
z1, . . . ,zN. (Otherwise, replaceQ′ by the expectation ofQ′(zπ(1), . . . ,zπ(N)), whereπ is a uniformly
random permutation of{1,2, . . . ,N}.) SinceQ′ is symmetric, it is a sum of elementary symmetric
polynomials

Q′
c1,...,cl

= ∑
i1,...,i l∈[N]

zc1
i1

zc2
i2
· · ·zcl

i l
.
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Let Q be the sum of elementary symmetric polynomials inz1, . . . ,zM with the same coefficients.
We claim thatQ approximatesφ . To see this, consider an input functionf : [N]→ [M]. There are at

mostN valuesj ∈ {1, . . . ,M} such that there existsi ∈ {1, . . . ,N} with f (i) = j. This means that, out of
M variablesz1, . . . ,zM corresponding tof , at mostN are nonzero.

Consider a permutationπ ∈ SM that maps alli ∈ [M] with zi 6= 0 to {1, . . . ,N}. Let f ′ = π f . Since
φ is symmetric,φ( f ) = φ( f ′). Since f ′ is a function from[N] to [N], Q′ correctly approximatesφ on
f ′. SinceQ(z1, . . . ,zN,0, . . . ,0) = Q′(z1, . . . ,zN), Q also correctly approximatesφ on f ′. SinceQ is
symmetric w.r.t. permutations ofz1, . . . ,zM, Q approximatesφ on the input functionf as well. This
completes the proof ofTheorem 3.1.

3.3 Lower bound on the polynomial degree of the AND–OR tree

As a by-product, our result provides a better lower bound on the polynomial degree of a well-studied
Boolean function.

This Boolean function is the two-level AND–OR tree onN2 variables. Letx1, . . . ,xN2 ∈ {0,1} be
the variables. We split them intoN groups, with theith group consisting ofx(i−1)N+1, x(i−1)N+2, . . ., xiN .
The AND–OR functiong(x1, . . . ,xN2) is defined as

g(x1, . . . ,xN2) =
n∧

i=1

iN∨
j=(i−1)N+1

x j .

A polynomial p(x1, . . . ,xN2) approximatesg if 0 ≤ p(x1, . . . ,xN2) ≤ ε wheneverg(x1, . . . ,xN2) = 0 and
1− ε ≤ p(x1, . . . ,xN2)≤ 1 wheneverg(x1, . . . ,xN2) = 1 (similarly toDefinition 2.1).

It has been an open problem to determine the minimum degree of a polynomial approximating the
two-level AND–OR tree. The best lower bound isΩ(

√
N logN) by Shi [21], while the best upper bound

is O(N). (Curiously, the quantum query complexity of this problem is known. It isΘ(N), as shown
by [9, 3]. If the polynomial degree iso(N), this would be the second example of a Boolean function
with a gap between the polynomial degree and quantum query complexity, with the first example being
the iterated functions in [4].) We show

Theorem 3.5. Any polynomial approximating g has degreeΩ(N2/3).

Proof. Consider the element distinctness problem forM = N. An instance of this problem,f ∈ F(N,N)
can be described byN2 variablesy11, . . . ,yNN (as shown inSection2.2).

The values of the function,f (1), f (2), . . ., f (N), are all distinct if and only if, for eachj ∈ [N],
there existsi ∈ [N] with f (i) = j. This, in turn, is equivalent to saying that, for eachi ∈ [N], one of the
variablesy1i ,y2i , . . . ,yNi is equal to 1.

Assume we have a polynomialP(x1, . . . ,xN2) of degreed approximating the two-level AND–OR tree
functiong. Consider the polynomialQ(y11, . . . ,yNN) obtained fromP by replacingx(i−1)N+ j with y ji . If
theN valuesf (i) are all distinct, then, for eachj ∈{1, . . . ,N}, there existsi such thatf (i) = j. Therefore,
one of the variablesy1 j , . . . ,yN j is 1 and the OR of those variables is also 1. This means that the AND–
OR functiong(x1, . . . ,xN2) is equal to 1. If the valuesf (i) are not all distinct, then there existsj ∈ [N]
such that there is noi with f (i) = j. Then,y1i ,y2i , . . . ,yNi are all 0, implying thatg(x1, . . . ,xN2) = 0 for
the corresponding assignmentx1, . . ., xN2.
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This means thatQ approximates the element distinctness property, in the sense ofSection2.2. Since
degreeΩ(N2/3) is required to approximate element distinctness,d = Ω(N2/3).

4 Conclusion

We have shown that, for any symmetric property of functionsf : [N]→ [M], its polynomial degree is the
same for allM ≥ N. Thus, if we prove a lower bound for the degree for some largeM, this immediately
implies the same bound forM = N. Since the polynomial degree is a lower bound for quantum query
complexity, this can be used to show quantum lower bounds. As particular cases of our result, we get
that the collision problem has degreeΩ(N1/3) and that the element distinctness problem has degree
Ω(N2/3), even ifM = N. This impliesΩ(N1/3) andΩ(N2/3) quantum lower bounds on these problems
for M = N.

A part of our result is a new representation for polynomials describing properties of functionsf :
[N]→ [M]. This new description might be useful for proving new quantum lower bounds. We conclude
with two open problems.

Modified element distinctness problem.Say we are givenf : [N] → [N] and we are promised that
either f is one-to-one or there arei, j,k such thatf (i) = f ( j) = f (k). We would like to know
which of these two is the case. What is the quantum query complexity of this problem?

The problem is quite similar to element distinctness in which we have to distinguish one-to-one
function from one havingf (i) = f ( j) for somei, j with i 6= j. The knownO(N2/3) quantum
algorithm still applies, but theΩ(N2/3) quantum lower bound of [2] (by a reduction from the
collision problem) breaks down. The best lower bound that we can prove isΩ(N1/2) by a reduction
from Grover’s search. Improving this bound toΩ(N2/3) is an open problem.

This problem is also similar to element distinctness if we look at it in our newz1, . . ., zM rep-
resentation. For element distinctness, a polynomialQ must satisfyQ(1, . . . ,1) ∈ [1− ε,1] and
Q(z1, . . . ,zN) ∈ [0,ε] if z1 + · · ·+ zN = N andzi ≥ 2 for somei. For our new problem, we must
haveQ(1, . . . ,1) ∈ [1− ε,1] andQ(z1, . . . ,zN) ∈ [0,ε] if z1 + · · ·+ zN = N andzi ≥ 3 for somei.
In the first case, degreeΩ(N2/3) is needed [2]. In the second case, no such lower bound is known.

Polynomial degree vs. quantum query complexity for symmetric properties.Let φ be a symmetric
property of functionsf : [N] → [M]. Let deg(φ) be the minimum degree of a polynomial that
ε-approximatesf andQ2(φ) be the minimum number of queries in a quantum query algorithm
computingφ with error at mostε. Is it true that these two quantities are polynomially related:
Q2(φ) = O(degc(φ)) for some constantc?

This open problem was first proposed by Aaronson [1, 2], regarding properties which are only
symmetric with respect to permuting inputs tof : φ( f ) = φ( f π) for anyπ ∈ SN. It remains open
both in this case and in the case of properties having the more general symmetry considered in
this paper (φ( f ) = φ(σ f π), for all π ∈ SN andσ ∈ SM). It is known thatQ2(φ) = O(deg2(φ)) if
M = 2.
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