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Abstract: Although a quantum state requires exponentially many classical bits to de-
scribe, the laws of quantum mechanics impose severe restrictions on how that state can be
accessed. This paper shows in three settings that quantum messages have only limited
advantages over classical ones.

First, we show thatBQP/qpoly⊆PP/poly, whereBQP/qpoly is the class of problems
solvable in quantum polynomial time, given a polynomial-size “quantum advice state” that
depends only on the input length. This resolves a question of Buhrman, and means that we
should not hope for an unrelativized separation between quantum and classical advice. Un-
derlying our complexity result is a general new relation between deterministic and quantum
one-way communication complexities, which applies to partial as well as total functions.

Second, we construct an oracle relative to whichNP 6⊂ BQP/qpoly. To do so, we
use the polynomial method to give the first correct proof of adirect product theoremfor
quantum search. This theorem has other applications; for example, it can be used to fix a
result of Klauck about quantum time-space tradeoffs for sorting.

Third, we introduce a newtrace distance methodfor proving lower bounds on quan-
tum one-way communication complexity. Using this method, we obtain optimal quantum
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lower bounds for two problems of Ambainis, for which no nontrivial lower bounds were
previously known even for classical randomized protocols.

A preliminary version of this paper appeared in the 2004 Conference on Computational
Complexity (CCC).

1 Introduction

How many classical bits can “really” be encoded inton qubits? Is itn, because of Holevo’s Theorem
[19]; 2n, because of dense quantum coding [13] and quantum teleportation [9]; exponentially many,
because of quantum fingerprinting [12]; or infinitely many, because amplitudes are continuous? The
best general answer to this question is probablymu, the Zen word that “unasks” a question.1

To a computer scientist, however, it is natural to formalize the question in terms ofquantum one-way
communication complexity[6, 12, 20, 40]. The setting is as follows: Alice has ann-bit stringx, Bob
has anm-bit stringy, and together they wish to evaluatef (x,y) where f : {0,1}n×{0,1}m→ {0,1} is
a Boolean function. After examining her inputx = x1 . . .xn, Alice can send a single quantum message
ρx to Bob, whereupon Bob, after examining his inputy = y1 . . .ym, can choose some basis in which to
measureρx. He must then output a claimed value forf (x,y). We are interested in how long Alice’s
message needs to be, for Bob to succeed with high probability on anyx,y pair. Ideally the length will
be much smaller than if Alice had to send a classical message.

Communication complexity questions have been intensively studied in theoretical computer science
(see the book of Kushilevitz and Nisan [23] for example). In both the classical and quantum cases,
though, most attention has focused ontwo-waycommunication, meaning that Alice and Bob get to
send messages back and forth. We believe that the study of one-way quantum communication presents
two main advantages. First, many open problems about two-way communication look gruesomely
difficult—for example, are the randomized and quantum communication complexities of every total
Boolean function polynomially related? We might gain insight into these problems by tackling their
one-way analogues first. And second, because of its greater simplicity, the one-way model more directly
addresses our opening question: how much “useful stuff” can be packed into a quantum state? Thus,
results on one-way communication fall into the quantum information theory tradition initiated by Holevo
[19] and others, as much as the communication complexity tradition initiated by Yao [38].

Related to quantum one-way communication is the notion ofquantum advice. As pointed out by
Nielsen and Chuang [28, p.203], there is no compelling physical reason to assume that the starting state
of a quantum computer is a computational basis state:2

[W]e know that many systems in Nature ‘prefer’ to sit in highly entangled states of many
systems; might it be possible to exploit this preference to obtain extra computational power?

1Anothermu-worthy question is, “Where does the power of quantum computing come from? Superposition? Interference?
The large size of Hilbert space?”

2One might object that the starting state is itself the outcome of some computational process, which began no earlier than
the Big Bang. However, (1) for all we know highly entangled states were created in the Big Bang, and (2) 14 billion years is
a long time.
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It might be that having access to certain states allows particular computations to be done
much more easily than if we are constrained to start in the computational basis.

One way to interpret Nielsen and Chuang’s provocative question is as follows. Suppose we could re-
quest thebest possiblestarting state for a quantum computer, knowing the language to be decided and the
input lengthn but not knowing the input itself.3 Denote the class of languages that we could then decide
by BQP/qpoly—meaning quantum polynomial time, given an arbitrarily-entangled but polynomial-
size quantum advice state.4 How powerful is this class? IfBQP/qpoly contained (for example) the
NP-complete problems, then we would need to rethink our most basic assumptions about the power
of quantum computing. We will see later that quantum advice is closely related to quantum one-way
communication, since we can think of an advice state as a one-way message sent to an algorithm by a
benevolent “advisor.”

This paper is about thelimitationsof quantum advice and one-way communication. It presents three
contributions which are basically independent of one another.

First, Section3 shows thatD1( f ) = O
(
mQ1

2( f ) logQ1
2( f )

)
for any Boolean functionf , partial or

total. HereD1( f ) is deterministic one-way communication complexity,Q1
2( f ) is bounded-error one-

way quantum communication complexity, andm is the length of Bob’s input. Intuitively, whenever the
set of Bob’s possible inputs is not too large, Alice can send him a short classical message that lets him
learn the outcome of any measurement he would have wanted to make on the quantum messageρx. It is
interesting that a slightly tighter bound for total functions—D1( f ) = O

(
mQ1

2( f )
)
—follows easily from

a result of Klauck [20] together with a lemma of Sauer [34] about VC-dimension. However, the proof
of the latter bound is highly nonconstructive, and seems to fail for partialf .

Using our communication complexity result, inSection3.1we show thatBQP/qpoly⊆ PP/poly—
in other words,BQP with polynomial-size quantum advice can be simulated inPP with polynomial-size
classical advice.5 This resolves a question of Harry Buhrman (personal communication), who asked
whether quantum advice can be simulated inanyclassical complexity class with short classical advice.
A corollary of our containment is that we cannot hope to show an unrelativized separation between
quantum and classical advice (that is, thatBQP/poly 6= BQP/qpoly), without also showing thatPP
does not have polynomial-size circuits.

What makes this result surprising is that, in the minds of many computer scientists, a quantum
state is basically an exponentially long vector. Indeed, this belief seems to fuel skepticism of quantum
computing (see Goldreich [17] for example). But given an exponentially long advice string, even a
classical computer could decide any language whatsoever. So one might imagine naı̈vely that quantum
advice would let us solve problems that are not even recursively enumerable given classical advice of

3If we knew the input, we would simply request a starting state that contains the right answer!
4BQP/qpoly might remind readers of a better-studied class calledQMA (Quantum Merlin-Arthur). But there are two key

differences: first, advice can be trusted while proofs cannot; second, proofs can be tailored to a particular input while advice
cannot.

5HerePP is Probabilistic Polynomial-Time, or the class of languages for which there exists a polynomial-time classical
randomized algorithm that accepts with probability greater than 1/2 if and only if an inputx is in the language. Also, given
a complexity classC, the classC/poly consists of all languages decidable by aC machine, given a polynomial-size classical
advice string that depends only on the input length. See www.complexityzoo.com for more information about standard
complexity classes mentioned in this paper.
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a similar size! The failure of this naı̈ve intuition supports the view that a quantum superposition over
n-bit strings is “more similar” to a probability distribution overn-bit strings than to a 2n-bit string.

Our second contribution, inSection4, is an oracle relative to whichNP is not contained inBQP/qpoly.
Underlying this oracle separation is the first correct proof of adirect product theoremfor quantum search.
Given anN-item database withK marked items, the direct product theorem says that if a quantum al-
gorithm makeso

(√
N
)

queries, then the probability that the algorithm finds allK of the marked items
decreases exponentially inK. Notice that such a result does not follow from any existing quantum lower
bound. Earlier Klauck [21] claimed a weaker direct product theorem, based on the hybrid method of
Bennett et al. [8], in a paper on quantum time-space tradeoffs for sorting. Unfortunately, Klauck’s proof
contained a bug. Our proof uses the polynomial method of Beals et al. [7], with the novel twist that
we examine allhigherderivatives of a polynomial (not just the first derivative). Our proof has already
been improved by Klauck,̌Spalek, and de Wolf [22], who were able to recover and even extend Klauck’s
original results about quantum sorting.

Our final contribution, inSection5, is a newtrace distance methodfor proving lower bounds on
quantum one-way communication complexity. Previously there was only one basic lower bound tech-
nique: the VC-dimension method of Klauck [20], which relied on lower bounds for quantum random
access codes due to Ambainis et al. [5] and Nayak [27]. Using VC-dimension one can show, for exam-
ple, thatQ1

2(DISJ) = Ω(n), where thedisjointness functionDISJ :{0,1}n×{0,1}n →{0,1} is defined
by DISJ(x,y) = 1 if and only ifxiyi = 0 for all i ∈ {1, . . . ,n}.

For some problems, however, the VC-dimension method yields no nontrivial quantum lower bound.
Seeking to make this point vividly, Ambainis posed the following problem. Alice is given two elements
x,y of a finite fieldFp (wherep is prime); Bob is given another two elementsa,b ∈ Fp. Bob’s goal
is to output 1 ify ≡ ax+ b(modp) and 0 otherwise. For this problem, the VC-dimension method
yields no randomizedor quantum lower bound better than constant. On the other hand, the well-known
fingerprinting protocol for the equality function [31] seems to fail for Ambainis’ problem, because of
the interplay between addition and multiplication. So it is natural to conjecture that the randomized
and even quantum one-way complexities areΘ(logp)—that is, that no nontrivial protocol exists for this
problem.

Ambainis posed a second problem in the same spirit. Here Alice is givenx ∈ {1, . . . ,N}, Bob is
giveny∈ {1, . . . ,N}, and both players know a subsetS⊂ {1, . . . ,N}. Bob’s goal is to decide whether
x−y∈ Swhere subtraction is moduloN. The conjecture is that ifS is chosen uniformly at random with
|S| about

√
N, then with high probability the randomized and quantum one-way complexities are both

Θ(logN).
Using our trace distance method, we are able to show optimal quantum lower bounds for both of

Ambainis’ problems. Previously, no nontrivial lower bounds were known even for randomized proto-
cols. The key idea is to consider two probability distributions over Alice’s quantum messageρx. The
first distribution corresponds tox chosen uniformly at random; the second corresponds tox chosen uni-
formly conditioned onf (x,y) = 1. These distributions give rise to two mixed statesρ andρy, which
Bob must be able to distinguish with non-negligible bias assuming he can evaluatef (x,y). We then
show an upper bound on the trace distance‖ρ −ρy‖tr, which implies that Bob cannot distinguish the
distributions.

Theorem 5.1gives a very general condition under which our trace distance method works; Corollar-
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ies5.2and5.3 then show that the condition is satisfied for Ambainis’ two problems. Besides showing
a significant limitation of the VC-dimension method, we hope our new method is a non-negligible step
towards proving thatR1

2( f ) = O
(
Q1

2( f )
)

for all total Boolean functionsf , whereR1
2( f ) is randomized

one-way complexity. We conclude inSection6 with some open problems.
This paper is a moderately revised version of an extended abstract that appeared in CCC 2004 [2].

The proofs of Theorems3.4, 3.5, 5.1, 5.2, and5.4have been written out in more detail; and discussions
have been added to Sections2.2and3.1, about the group membership problem and the classPQP/qpoly
respectively. Also, an error has been fixed in Section4: the direct product theorem in [2] based on
Bernstein’s inequality is incorrect. Fortunately, the easier version based on V. A. Markov’s inequality is
still perfectly sufficient to showNP 6⊂ BQP/qpoly relative to an oracle; and in any case, the Bernstein’s
version has been superseded by the results of Klauck,Špalek, and de Wolf [22].

2 Preliminaries

This section reviews basic definitions and results about quantum one-way communication (inSec-
tion 2.1) and quantum advice (inSection2.2); thenSection2.3 proves a quantum information lemma
that will be used throughout the paper.

2.1 Quantum One-Way Communication

Following standard conventions, we denote byD1( f ) the deterministic one-way complexity off , or
the minimum number of bits that Alice must send if her message is a function ofx. Also, R1

2( f ), the
bounded-error randomized one-way complexity, is the minimumk such that for everyx,y, if Alice sends
Bob ak-bit message drawn from some distributionDx, then Bob can output a bita such thata = f (x,y)
with probability at least 2/3. (The subscript 2 means that the error is two-sided.) The zero-error
randomized complexityR1

0( f ) is similar, except that Bob’s answer can never be wrong: he must output
f (x,y) with probability at least 1/2 and otherwise declare failure.

The bounded-error quantum one-way complexityQ1
2( f ) is the minimumk such that, if Alice sends

Bob a mixed stateρx of k qubits, there exists a joint measurement ofρx andy enabling Bob to output
ana such thata = f (x,y) with probability at least 2/3. The zero-error and exact complexitiesQ1

0( f )
andQ1

E ( f ) are defined analogously. Requiring Alice’s message to be a pure state would increase these
complexities by at most a factor of 2, since by Kraus’ Theorem, everyk-qubit mixed state can be realized
as half of a 2k-qubit pure state. (Winter [37] has shown that this factor of 2 is tight.) See Klauck [20]
for more detailed definitions of quantum and classical one-way communication complexity measures.

It is immediate thatD1( f ) ≥ R1
0( f ) ≥ R1

2( f ) ≥ Q1
2( f ), that R1

0( f ) ≥ Q1
0( f ) ≥ Q1

2( f ), and that
D1( f ) ≥ Q1

E ( f ). Also, for total f , Duriš et al. [14] showed thatR1
0( f ) = Θ

(
D1( f )

)
, while Klauck

[20] showed thatQ1
E ( f ) = D1( f ) and thatQ1

0( f ) = Θ
(
D1( f )

)
. In other words, randomized and

quantum messages yield no improvement for total functions if we are unwilling to tolerate a bounded
probability of error. This remains true even if Alice and Bob share arbitrarily many EPR pairs [20]. As
is often the case, the situation is dramatically different for partial functions: there it is easy to see that
R1

0( f ) can be constant even thoughD1( f ) = Ω(n): let f (x,y) = 1 if x1y1 + · · ·+ xn/2yn/2 ≥ n/4 and
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xn/2+1yn/2+1+ · · ·+xnyn = 0 and f (x,y) = 0 if x1y1+ · · ·+xn/2yn/2 = 0 andxn/2+1yn/2+1+ · · ·+xnyn ≥
n/4, promised that one of these is the case.

Moreover, Bar-Yossef, Jayram, and Kerenidis [6] havealmostshown thatQ1
E ( f ) can be exponen-

tially smaller thanR1
2( f ). In particular, they proved that separation for arelation, meaning a problem

for which Bob has many possible valid outputs. For a partial functionf based on their relation, they
also showed thatQ1

E ( f ) = Θ(logn) whereasR1
0( f ) = Θ(

√
n); and they conjectured (but did not prove)

thatR1
2( f ) = Θ(

√
n).

2.2 Quantum Advice

Informally, BQP/qpoly is the class of languages decidable in polynomial time on a quantum computer,
given a polynomial-size quantum advice state that depends only on the input length. We now make the
definition more formal.

Definition 2.1. A languageL is in BQP/qpoly if there exists a polynomial-size quantum circuit family
{Cn}n≥1, and a polynomial-size family of quantum states{|ψn〉}n≥1, such that for allx∈ {0,1}n,

(i) If x∈ L thenq(x) ≥ 2/3, whereq(x) is the probability that the first qubit is measured to be|1〉,
afterCn is applied to the starting state|x〉⊗ |0· · ·0〉⊗ |ψn〉.

(ii) If x /∈ L thenq(x)≤ 1/3.6

The central open question aboutBQP/qpoly is whether it equalsBQP/poly, orBQP with polynomial-
sizeclassicaladvice. We do have a candidate for an oracle problem separating the two classes: the
group membership problemof Watrous [36], which we describe for completeness. LetGn be a black
box group7 whose elements are uniquely labeled byn-bit strings, and letHn be a subgroup ofGn. Both
Gn andHn depend only on the input lengthn, so we can assume that a nonuniform algorithm knows
generating sets for both of them. Given an elementx∈ Gn as input, the problem is to decide whether
x∈ Hn.

If Gn is “sufficiently nonabelian” andHn is exponentially large, we do not know how to solve this
problem inBQP or evenBQP/poly. On the other hand, we can solve it inBQP/qpoly as follows. Let
our quantum advice state be an equal superposition over all elements ofHn:

|Hn〉=
1√
|Hn|

∑
y∈Hn

|y〉

We can transform|Hn〉 into

|xHn〉=
1√
|Hn|

∑
y∈Hn

|xy〉

6If the starting state is|x〉⊗ |0· · ·0〉⊗ |ϕ〉 for some|ϕ〉 6= |ψn〉, then we do not require the acceptance probability to lie in
[0,1/3]∪ [2/3,1]. Therefore, what we callBQP/qpoly corresponds to what Nishimura and Yamakami [30] call BQP/∗Qpoly.
Also, it does not matter whether the circuit family{Cn}n≥1 is uniform, since we are giving it advice anyway.

7In other words, we have a quantum oracle available that givenx,y∈ Gn outputsxy (i.e. exclusive-OR’sxy into an answer
register), and that givenx∈Gn outputsx−1.
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by mapping|y〉 |0〉 to |y〉 |xy〉 to
∣∣y⊕x−1xy

〉
|xy〉= |0〉 |xy〉 for eachy∈ Hn. Our algorithm will first pre-

pare the state(|0〉 |Hn〉+ |1〉 |xHn〉)/
√

2, then apply a Hadamard gate to the first qubit, and finally mea-
sure the first qubit in the standard basis, in order to distinguish the cases|Hn〉= |xHn〉 and〈Hn|xHn〉= 0
with constant bias. The first case occurs wheneverx∈ Hn, and the second occurs wheneverx /∈ Hn.

Although the group membership problem provides intriguing evidence for the power of quantum
advice, we have no idea how to show that it is not also solvable using classical advice. Indeed, apart
from a result of Nishimura and Yamakami [30] that EESPACE 6⊂ BQP/qpoly, essentially nothing was
known about the classBQP/qpoly before the present work.

2.3 The Almost As Good As New Lemma

The following simple lemma, which was implicit in [5], is used three times in this paper—in Theorems
3.4, 3.5, and4.7. It says that, if the outcome of measuring a quantum stateρ could be predicted with
near-certainty given knowledge ofρ, then measuringρ will damage it only slightly. Recall that the
trace distance‖ρ −σ‖tr between two mixed statesρ andσ equals1

2 ∑i |λi |, whereλ1, . . . ,λN are the
eigenvalues ofρ −σ .

Lemma 2.2. Suppose a2-outcome measurement of a mixed stateρ yields outcome0 with probability
1− ε. Then after the measurement, we can recover a stateρ̃ such that‖ρ̃ −ρ‖tr ≤

√
ε. This is true

even if the measurement is a POVM (that is, involves arbitrarily many ancilla qubits).

Proof. Let |ψ〉 be a purification of the entire system (ρ plus ancilla). We can represent any measurement
as a unitaryU applied to|ψ〉, followed by a 1-qubit measurement. Let|ϕ0〉 and|ϕ1〉 be the two possible
pure states after the measurement; then〈ϕ0|ϕ1〉= 0 andU |ψ〉= α |ϕ0〉+β |ϕ1〉 for someα,β such that
|α|2 = 1− ε and|β |2 = ε. Writing the measurement result asσ = (1− ε) |ϕ0〉〈ϕ0|+ ε |ϕ1〉〈ϕ1|, it is
easy to show that ∥∥σ −U |ψ〉〈ψ|U−1

∥∥
tr =

√
ε (1− ε).

So applyingU−1 to σ , ∥∥U−1
σU −|ψ〉〈ψ|

∥∥
tr =

√
ε (1− ε).

Let ρ̃ be the restriction ofU−1σU to the original qubits ofρ. Theorem 9.2 of Nielsen and Chuang [28]
shows that tracing out a subsystem never increases trace distance, so‖ρ̃ −ρ‖tr ≤

√
ε (1− ε)≤

√
ε.

3 Simulating Quantum Messages

Let f : {0,1}n×{0,1}m → {0,1} be a Boolean function. In this section we first combine existing
results to obtain the relationD1( f ) = O

(
mQ1

2( f )
)

for total f , and then prove using a new method that
D1( f ) = O

(
mQ1

2( f ) logQ1
2( f )

)
for all f (partial or total).

Define thecommunication matrix Mf to be a 2n× 2m matrix with f (x,y) in the xth row andyth

column. Then letting rows( f ) be the number of distinct rows inM f , the following is immediate.
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Proposition 3.1. For total f ,

D1( f ) = dlog2 rows( f )e ,
Q1

2( f ) = Ω(log logrows( f )) .

Also, let the VC-dimension VC( f ) equal the maximumk for which there exists a 2n×k submatrix
Mg of M f with rows(g) = 2k. Then Klauck [20] observed the following, based on a lower bound for
quantum random access codes due to Nayak [27].

Proposition 3.2 (Klauck). Q1
2( f ) = Ω(VC( f )) for total f .

Now let cols( f ) be the number of distinct columns inM f . ThenTheorem 3.2yields the following
general lower bound:

Corllary 3.3. D1( f ) = O
(
mQ1

2( f )
)

for total f , where m is the size of Bob’s input.

Proof. It follows from a lemma of Sauer [34] that

rows( f )≤
VC( f )

∑
i=0

(
cols( f )

i

)
≤ cols( f )VC( f )+1 .

Hence VC( f )≥ logcols( f ) rows( f )−1, so

Q1
2( f ) = Ω(VC( f )) = Ω

(
logrows( f )
logcols( f )

)
= Ω

(
D1( f )

m

)
.

In particular,D1( f ) andQ1
2( f ) are polynomially related for totalf , whenever Bob’s input is polyno-

mially smaller than Alice’s, and Alice’s input is not “padded.” More formally,D1( f )= O
(

Q1
2( f )1/(1−c)

)
wheneverm = O(nc) for somec < 1 and rows( f ) = 2n (i.e. all rows ofM f are distinct). For then
D1( f ) = n by Theorem 3.1, andQ1

2( f ) = Ω
(
D1( f )/nc

)
= Ω

(
n1−c

)
by Corollary 3.3.

We now give a new method for replacing quantum messages by classical ones when Bob’s input is
small. Although the best bound we know how to obtain with this method—D1( f )= O

(
mQ1

2( f ) logQ1
2( f )

)
—

is slightly weaker than theD1( f ) = O
(
mQ1

2( f )
)

of Corollary 3.3, our method works forpartial Boolean
functions as well as total ones. It also yields a (relatively) efficient procedure by which Bob can recon-
struct Alice’s quantum message, a fact we will exploit inSection3.1 to showBQP/qpoly ⊆ PP/poly.
By contrast, the method based on Sauer’s Lemma seems to be nonconstructive.

Theorem 3.4. D1( f ) = O
(
mQ1

2( f ) logQ1
2( f )

)
for all f (partial or total).

THEORY OFCOMPUTING, Volume 1 (2005), pp. 1–28 8



L IMITATIONS OF QUANTUM ADVICE AND ONE-WAY COMMUNICATION

Proof. Let f : D → {0,1} be a partial Boolean function withD ⊆ {0,1}n×{0,1}m, and for allx ∈
{0,1}n, let Dx = {y∈ {0,1}m : (x,y) ∈D}. Suppose Alice can send Bob a quantum state withQ1

2( f )
qubits, that enables him to computef (x,y) for anyy∈Dx with error probability at most 1/3. Then she
can also send him a boosted stateρ with K = O

(
Q1

2( f ) logQ1
2( f )

)
qubits, such that for ally∈Dx,

|Py(ρ)− f (x,y)| ≤ 1

Q1
2( f )10,

wherePy(ρ) is the probability that some measurementΛ [y] yields a ‘1’ outcome when applied toρ. We
can assume for simplicity thatρ is a pure state|ψ〉〈ψ|; as discussed inSection2.1, this increases the
message length by at most a factor of 2.

Let Y be any subset ofDx satisfying|Y| ≤ Q1
2( f )2. Then starting withρ, Bob can measureΛ [y]

for eachy∈ Y in lexicographic order, reusing the same message state again and again but uncomputing
whatever garbage he generates while measuring. Letρt be the state after thetth measurement; thus
ρ0 = ρ = |ψ〉〈ψ|. Since the probability that Bob outputs the wrong value off (x,y) on any giveny is
at most 1/Q1

2( f )10, Lemma 2.2implies that

‖ρt −ρt−1‖tr ≤
√

1

Q1
2( f )10 =

1

Q1
2( f )5 .

Since trace distance satisfies the triangle inequality, this in turn implies that

‖ρt −ρ‖tr ≤
t

Q1
2( f )5 ≤

1

Q1
2( f )3 .

Now imagine an “ideal scenario” in whichρt = ρ for everyt; that is, the measurements do not damage
ρ at all. Then the maximum bias with which Bob could distinguish the actual from the ideal scenario is

‖ρ0−ρ‖tr + · · ·+
∥∥ρ|Y|−1−ρ

∥∥
tr
≤ |Y|

Q1
2( f )3 ≤

1

Q1
2( f )

.

So by the union bound, Bob will outputf (x,y) for everyy∈ Y simultaneously with probability at least

1− |Y|
Q1

2( f )10 −
1

Q1
2( f )

≥ 0.9

for sufficiently largeQ1
2( f ).

Now imagine that the communication channel is blocked, so Bob has to guess what message Alice
wants to send him. He does this by using theK-qubit maximally mixed stateI in place ofρ. We can
write I as

I =
1

2K

2K

∑
j=1

∣∣ψ j
〉〈

ψ j
∣∣ ,

where|ψ1〉 , . . . , |ψ2K 〉 are orthonormal vectors such that|ψ1〉= |ψ〉. So if Bob uses the same procedure
as above except withI instead ofρ, then for anyY ⊆ Dx with |Y| ≤ Q1

2( f )2, he will output f (x,y) for
everyy∈ Y simultaneously with probability at least 0.9/2K .
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We now give the classical simulation of the quantum protocol. Alice’s message to Bob consists
of T ≤ K inputs y1, . . . ,yT ∈ Dx, together with f (x,y1) , . . . , f (x,yT).8 Thus the message length is
mT+ T = O

(
mQ1

2( f ) logQ1
2( f )

)
. Here are the semantics of Alice’s message:“Bob, suppose you

looped over all y∈ Dx in lexicographic order; and for each one, guessed that f(x,y) = round(Py(I)),
whereround(p) is 1 if p ≥ 1/2 and0 if p < 1/2. Then y1 is the first y for which you would guess the
wrong value of f(x,y). In general, let It be the state obtained by starting from I and then measuring
Λ [y1] , . . . ,Λ [yt ] in that order, given that the outcomes of the measurements are f(x,y1) , . . . , f (x,yt) re-
spectively. (Note that It is not changed by measurements of every y∈Dx up to yt , only by measurements
of y1, . . . ,yt .) If you looped over all y∈ Dx in lexicographic order beginning from yt , then yt+1 is the
first y you would encounter for whichround(Py(It)) 6= f (x,y).”

Given the sequence ofyt ’s as defined above, it is obvious that Bob can computef (x,y) for any
y∈ Dx. First, if y = yt for somet, then he simply outputsf (x,yt). Otherwise, lett∗ be the largestt
for which yt < y lexicographically. Then Bob prepares a classical description of the stateIt∗—which
he can do since he knowsy1, . . . ,yt∗ and f (x,y1) , . . . , f (x,yt∗)—and then outputs round(Py(It∗)) as his
claimed value off (x,y). Notice that, although Alice uses her knowledge ofDx to prepare her message,
Bob does not need to knowDx in order to interpret the message. That is why the simulation works for
partial as well as total functions.

But why can we assume that the sequence ofyt ’s stops atyT for someT ≤ K? SupposeT > K; we
will derive a contradiction. LetY = {y1, . . . ,yK+1}. Then|Y| = K + 1≤ Q1

2( f )2, so we know from
previous reasoning that if Bob starts withI and then measuresΛ [y1] , . . . ,Λ [yK+1] in that order, he will
observef (x,y1) , . . . , f (x,yK+1) simultaneously with probability at least 0.9/2K . But by the definition of
yt , the probability thatΛ [yt ] yields the correct outcome is at most 1/2, conditioned onΛ [y1] , . . . ,Λ [yt−1]
having yielded the correct outcomes. Thereforef (x,y1) , . . . , f (x,yK+1) are observed simultaneously
with probability at most 1/2K+1 < 0.9/2K , contradiction.

3.1 Simulating Quantum Advice

We now apply our new simulation method to upper-bound the power of quantum advice.

Theorem 3.5. BQP/qpoly ⊆ PP/poly.

Proof. For notational convenience, letLn(x) = 1 if input x ∈ {0,1}n is in languageL, andLn(x) = 0
otherwise. SupposeLn is computed by aBQP machine using quantum advice of lengthp(n). We
will give a PP machine that computesLn using classical advice of lengthO(np(n) logp(n)). Because
of the close connection between advice and one-way communication, the simulation method will be
essentially identical to that ofTheorem 3.4.

By using a boosted advice state onK = O(p(n) logp(n)) qubits, a polynomial-time quantum al-
gorithm A can computeLn(x) with error probability at most 1/p(n)10. Now the classical advice
to the PP machine consists ofT ≤ K inputs x1, . . . ,xT ∈ {0,1}n, together withLn(x1) , . . . ,Ln(xT).
Let I be the maximally mixed state onK qubits. Also, letPx (ρ) be the probability thatA outputs
‘1’ on input x, given ρ as its advice state. Thenx1 is the lexicographically first inputx for which

8Strictly speaking, Bob will be able to computef (x,y1) , . . . , f (x,yT) for himself giveny1, . . . ,yT ; he does not need Alice
to tell him the f values.
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round(Px (I)) 6= Ln(x). In general, letIt be the state obtained by starting withI as the advice and
then runningA on x1, . . . ,xt in that order (uncomputing garbage along the way), if we postselect on
A correctly outputtingLn(x1) , . . . ,Ln(xt). Thenxt+1 is the lexicographically firstx > xt for which
round(Px (It)) 6= Ln(x).

Given the classical advice, we can computeLn(x) as follows: ifx∈ {x1, . . . ,xT} then outputLn(xt).
Otherwise lett∗ be the largestt for whichxt < x lexicographically, and output round(Px (It∗)). The proof
that this algorithm works is the same as inTheorem 3.4, and so is omitted for brevity. All we need to
show is that the algorithm can be implemented inPP.

Adleman, DeMarrais, and Huang [4] (see also Fortnow and Rogers [16]) showed thatBQP⊆PP, by
using what physicists would call a “Feynman sum-over-histories.” Specifically, letC be a polynomial-
size quantum circuit that starts in the all-0 state, and that consists solely of Toffoli and Hadamard gates
(Shi [35] has shown that this gate set is universal). Also, letαz be the amplitude of basis state|z〉
after all gates inC have been applied. We can writeαz as a sum of exponentially many contributions,
a1 + · · ·+ aN, where eachai is a rational real number computable in classical polynomial time. So by
evaluating the sum

|αz|2 =
N

∑
i, j=1

aia j ,

putting positive and negative terms on “opposite sides of the ledger,” aPP machine can check whether
|αz|2 > β for any rational constantβ . It follows that aPP machine can also check whether

∑
z : S1(z)

|αz|2 > ∑
z : S0(z)

|αz|2

(or equivalently, whether Pr[S1] > Pr[S0]) for any classical polynomial-time predicatesS1 andS0.
Now suppose the circuitC does the following, in the casex /∈ {x1, . . . ,xT}. It first prepares the

K-qubit maximally mixed stateI (as half of a 2K-qubit pure state), and then runsA on x1, . . . ,xt∗ ,x in
that order, usingI as its advice state. The claimed values ofLn(x1) , . . . ,Ln(xt∗) ,Ln(x) are written to
output registers but not measured. Fori ∈ {0,1}, let the predicateSi (z) hold if and only if basis state
|z〉 contains the output sequenceLn(x1) , . . . ,Ln(xt∗) , i. Then it is not hard to see that

Px (It∗) =
Pr[S1]

Pr[S1]+Pr[S0]
,

soPx (It∗) > 1/2 and henceLn(x) = 1 if and only if Pr[S1] > Pr[S0]. Since the casex∈ {x1, . . . ,xT} is
trivial, this shows thatLn(x) is computable inPP/poly.

We make five remarks aboutTheorem 3.5. First, for the same reason thatTheorem 3.4works
for partial as well as total functions, we actually obtain the stronger result thatPromiseBQP/qpoly ⊆
PromisePP/poly, wherePromiseBQP andPromisePP are the promise-problem versions ofBQP and
PP respectively.

Second, as pointed out to us by Lance Fortnow, a corollary ofTheorem 3.5is that we cannot
hope to show an unrelativized separation betweenBQP/poly andBQP/qpoly, without also showing
that PP does not have polynomial-size circuits. ForBQP/poly 6= BQP/qpoly clearly implies that
P/poly 6= PP/poly. But the latter then implies thatPP 6⊂ P/poly, since assumingPP ⊂ P/poly we
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could also obtain polynomial-size circuits for a languageL ∈ PP/poly by defining a new language
L′ ∈ PP, consisting of all(x,a) pairs such that thePP machine would acceptx given advice stringa.
The reason this works is thatPP is a syntactically defined class.

Third, an earlier version of this paper showed thatBQP/qpoly ⊆ EXP/poly, by using a simulation
in which anEXP machine keeps track of a subspaceH of the advice Hilbert space to which the ‘true’
advice state must be close. In that simulation, the classical advice specifies inputsx1, . . . ,xT for which
dim(H) is at least halved; the observation that dim(H) must be at least 1 by the end then implies that
T ≤K = O(p(n) logp(n)), meaning that the advice is of polynomial size. The huge improvement from
EXP to PP came solely from working withmeasurement outcomesand theirprobabilities instead of
with subspacesand theirdimensions. We can compute the former using the same “Feynman sum-over-
histories” that Adleman et al. [4] used to showBQP ⊆ PP, but could not see any way to compute the
latter without explicitly storing and diagonalizing exponentially large matrices.

Fourth, assumingBQP/poly 6= BQP/qpoly, Theorem 3.5is almostthe best result of its kind that one
could hope for, since the only classes known to lie betweenBQP andPP and not known to equal either
are obscure ones such asAWPP [16]. Initially the theorem seemed to us to prove something stronger,
namely thatBQP/qpoly ⊆ PostBQP/poly. HerePostBQP is the class of languages decidable by
polynomial-size quantum circuits withpostselection—meaning the ability to measure a qubit that has a
nonzero probability of being|1〉, and thenassumethat the measurement outcome will be|1〉. Clearly
PostBQP lies somewhere betweenBQP andPP; one can think of it as a quantum analogue of the
classical complexity classBPPpath [18]. We have since shown, however, thatPostBQP = PP [3].

Fifth, it is clear that Adleman et al.’sBQP⊆ PP result [4] can be extended to show thatPQP = PP.
HerePQP is the quantum analogue ofPP—that is, quantum polynomial time but where the probability
of a correct answer need only be bounded above 1/2, rather than above 2/3. A reviewer asked whether
Theorem 3.5could similarly be extended to show thatPQP/qpoly = PP/poly. The answer is no—for
indeed,PQP/qpoly contains every language whatsoever! To see this, given any functionLn : {0,1}n →
{0,1}, let our quantum advice state be

|ψn〉=
1

2n/2 ∑
x∈{0,1}n

|x〉 |Ln(x)〉 .

Then aPQP algorithm to computeLn is as follows: given an inputx∈ {0,1}n, first measure|ψn〉 in the
standard basis. If|x〉 |Ln(x)〉 is observed, outputLn(x); otherwise output a uniform random bit.

4 Oracle Limitations

Can quantum computers solveNP-complete problems in polynomial time? In the early days of quantum
computing, Bennett et al. [8] gave an oracle relative to whichNP 6⊂ BQP, providing what is still the
best evidence we have that the answer is no. It is easy to extend Bennett et al.’s result to give an oracle
relative to whichNP 6⊂ BQP/poly; that is,NP is hard even for nonuniform quantum algorithms. But
when we try to showNP 6⊂ BQP/qpoly relative to an oracle, a new difficulty arises: even if the oracle
encodes 2n exponentially hard search problems for each input lengthn, the quantum advice, being an
“exponentially large object” itself, might somehow encode information about all 2n problems. We need
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to argue that even if so, only a miniscule fraction of that information can be extracted by measuring the
advice.

How does one prove such a statement? As it turns out, the task can be reduced to proving adirect
product theoremfor quantum search. This is a theorem that in its weakest form says the following:
givenN items,K of which are marked, if we lack enough time to find evenonemarked item, then the
probability of finding allK items decreases exponentially inK. For intuitively, suppose there were a
quantum advice state that let us efficiently find any one ofK marked items. Then by “guessing” the
advice (i.e. replacing it by a maximally mixed state), and then using the guessed advice multiple times,
we could efficiently find allK of the items with a success probability that our direct product theorem
shows is impossible. This reduction is formalized inTheorem 4.7.

But what about the direct product theorem itself? It seems like it should be trivial to prove—for
surely there are no devious correlations by which success in finding one marked item leads to success
in finding all the others! So it is surprising that even a weak direct product theorem eluded proof for
years. In 2001, Klauck [21] gave an attempted proof using the hybrid method of Bennett et al. [8].
His motivation was to show a limitation of space-bounded quantum sorting algorithms. Unfortunately,
Klauck’s proof contained a bug.9

In this section we give the first correct proof of a direct product theorem, based on the polynomial
method of Beals et al. [7]. Besides showing thatNP 6⊂ BQP/qpoly relative to an oracle, our result can
be used to recover the claims made in [21] about the hardness of quantum sorting (see Klauck,Špalek,
and de Wolf [22] for details). We expect the result to have other applications as well.

We will need the following lemma of Beals et al. [7], which builds on ideas due to Minsky and
Papert [26] and Nisan and Szegedy [29].

Lemma 4.1 (Beals et al.).Suppose a quantum algorithm makes T queries to an oracle string X∈
{0,1}N, and accepts with probability A(X). Then there exists a real polynomial p, of degree at most
2T, such that

p(i) = EX
|X|=i

[A(X)]

for all integers i∈ {0, . . . ,N}, where|X| denotes the Hamming weight of X.

Lemma 4.1implies that, to lower-bound the number of queriesT made by a quantum algorithm,
it suffices to lower-bound deg(p), wherep is a real polynomial representing the algorithm’s expected
acceptance probability. As an example, any quantum algorithm that computes the OR function onN bits,
with success probability at least 2/3, yields a polynomialp such thatp(0) ∈ [0,1/3] andp(i) ∈ [2/3,1]
for all integersi ∈{1, . . . ,N}. To lower-bound the degree of such a polynomial, one can use an inequality
proved by A. A. Markov in 1890 ([24]; see also [32]):

Theorem 4.2 (A. A. Markov). Given a real polynomial p and constant N> 0, let r(0) = maxx∈[0,N] |p(x)|
and r(1) = maxx∈[0,N] |p′ (x)|. Then

deg(p)≥

√
Nr(1)

2r(0) .

9Specifically, the last sentence in the proof of Lemma 5 in [21] (“Clearly this probability is at leastqx (px−α)”) is not
justified by what precedes it.

THEORY OFCOMPUTING, Volume 1 (2005), pp. 1–28 13



SCOTT AARONSON

Theorem 4.2deals with the entire range[0,N], whereas in our settingp(x) is constrained only at the
integer pointsx∈ {0, . . . ,N}. But as shown in [15, 29, 33], this is not a problem. For by elementary
calculus,p(0) ≤ 1/3 and p(1) ≥ 2/3 imply that p′ (x) ≥ 1/3 for some realx ∈ [0,1], and therefore
r(1) ≥ 1/3. Furthermore, letx∗ be a point in[0,N] where|p(x∗)| = r(0). Then p(bx∗c) ∈ [0,1] and
p(dx∗e) ∈ [0,1] imply thatr(1) ≥ 2

(
r(0)−1

)
. Thus

deg(p)≥

√
Nr(1)

2r(0) ≥

√
Nmax

{
1/3,2

(
r(0)−1

)}
2r(0) = Ω

(√
N
)

.

This is the proof of Beals et al. [7] that quantum search requiresΩ
(√

N
)

queries.
When proving a direct product theorem, we can no longer applyTheorem 4.2so straightforwardly.

The reason is that the success probabilities in question are extremely small, and therefore the maximum
derivativer(1) could also be extremely small. Fortunately, though, we can still prove a good lower
bound on the degree of the relevant polynomialp. The key is to look not just at the first derivative ofp,
but at higher derivatives.

To start, we need a lemma about the behavior of functions under repeated differentiation.

Lemma 4.3. Let f : R → R be an infinitely differentiable function such that for some positive integer
K, we have f(i) = 0 for all i ∈ {0, . . . ,K−1} and f(K) = δ > 0. Also, let r(m) = maxx∈[0,N]

∣∣ f (m) (x)
∣∣,

where f(m) (x) is the mth derivative of f evaluated at x (thus f(0) = f ). Then r(m) ≥ δ/m! for all
m∈ {0, . . . ,K}.

Proof. We claim, by induction onm, that there existK−m+1 points 0≤ x(m)
0 < · · ·< x(m)

K−m≤ K such

that f (m)
(

x(m)
i

)
= 0 for all i ≤ K −m− 1 and f (m)

(
x(m)

K−m

)
≥ δ/m!. If we definex(0)

i = i, then the

base casem = 0 is immediate from the conditions of the lemma. Suppose the claim is true form;

then by elementary calculus, for alli ≤ K−m−2 there exists a pointx(m+1)
i ∈

(
x(m)

i ,x(m)
i+1

)
such that

f (m+1)
(

x(m+1)
i

)
= 0. Notice thatx(m+1)

i ≥ x(m)
i ≥ ·· · ≥ x(0)

i = i. So there is also a pointx(m+1)
K−m−1 ∈(

x(m)
K−m−1,x

(m)
K−m

)
such that

f (m+1)
(

x(m+1)
K−m−1

)
≥

f (m)
(

x(m)
K−m

)
− f (m)

(
x(m)

K−m−1

)
x(m)

K−m−x(m)
K−m−1

≥ δ/m!−0
K− (K−m−1)

=
δ

(m+1)!
.

With the help ofLemma 4.3, we can sometimes lower-bound the degree of a real polynomial even its
first derivative is small throughout the region of interest. To do so, we use the following generalization
of A. A. Markov’s inequality (Theorem 4.2), which was proved by A. A. Markov’s younger brother V.
A. Markov in 1892 ([25]; see also [32]).
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Theorem 4.4 (V. A. Markov). Given a real polynomial p of degree d and positive real number N, let
r(m) = maxx∈[0,N]

∣∣p(m) (x)
∣∣. Then for all m∈ {1, . . . ,d},

r(m) ≤

(
2r(0)

N

)m

T(m)
d (1)

≤

(
2r(0)

N

)m d2
(
d2−12

)(
d2−22

)
· · · · ·

(
d2− (m−1)2

)
1·3·5· · · · · (2m−1)

.

Here Td (x) = cos(darccosx) is the dth Chebyshev polynomial of the first kind.

As we demonstrate below, combiningTheorem 4.4with Lemma 4.3yields a lower bound on deg(p).

Lemma 4.5. Let p be a real polynomial such that

(i) p(x) ∈ [0,1] at all integer points x∈ {0, . . . ,N}, and

(ii) for some positive integer K≤ N and realδ > 0, we have p(K) = δ and p(i) = 0 for all i ∈
{0, . . . ,K−1}.

Thendeg(p) = Ω
(√

Nδ 1/K
)

.

Proof. Let p(m) andr(m) be as inTheorem 4.4. Then for allm∈ {1, . . . ,deg(p)}, Theorem 4.4yields

r(m) ≤

(
2r(0)

N

)m
deg(p)2m

1·3·5· · · · · (2m−1)

Rearranging,

deg(p)≥
√

N

2r(0)

(
1·3·5· · · · · (2m−1) · r(m)

)1/m

for all m≥ 1 (if m> deg(p) thenr(m) = 0 so the bound is trivial).
There are now two cases. First supposer(0) ≥ 2. Then as discussed previously, condition (i) implies

thatr(1) ≥ 2
(
r(0)−1

)
, and hence that

deg(p)≥

√
Nr(1)

2r(0) ≥

√
N
(
r(0)−1

)
r(0) = Ω

(√
N
)

by Theorem 4.2. Next supposer(0) < 2. Thenr(m) ≥ δ/m! for all m≤ K by Lemma 4.3. So setting
m= K yields

deg(p)≥

√
N
4

(
1·3·5· · · · · (2K−1) · δ

K!

)1/K

= Ω
(√

Nδ 1/K
)

.

Either way we are done.
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Strictly speaking, we do not need the full strength ofTheorem 4.4to prove a lower bound on deg(p)
that suffices for an oracle separation betweenNP andBQP/qpoly. For we can show a “rough-and-
ready” version of V. A. Markov’s inequality by applying A. A. Markov’s inequality (Theorem 4.2)
repeatedly, top, p(1), p(2), and so on. This yields

r(m) ≤ 2
N

deg(p)2 r(m−1) ≤
(

2
N

deg(p)2
)m

r(0)

for all m. If deg(p) is small, then this upper bound onr(m) contradicts the lower bound ofLemma 4.3.

However, the lower bound on deg(p) that one gets from A. A. Markov’s inequality is onlyΩ
(√

Nδ 1/K/K
)

,

as opposed toΩ
(√

Nδ 1/K
)

from Lemma 4.5.10

Shortly after seeing our proof of a weak direct product theorem, Klauck,Špalek, and de Wolf [22]

managed to improve the lower bound on deg(p) to the essentially tightΩ
(√

NKδ 1/K
)

. In particular,

their bound implies thatδ decreases exponentially inK whenever deg(p) = o
(√

NK
)
. They obtained

this improvement byfactoring pinstead of differentiating it as inLemma 4.3.
In any case, a direct product theorem follows trivially from what has already been said.

Theorem 4.6 (Direct Product Theorem).Suppose a quantum algorithm makes T queries to an oracle
string X∈ {0,1}N. Let δ be the minimum probability, over all X with Hamming weight|X| = K, that

the algorithm finds all K of the ‘1’ bits. Thenδ ≤
(
cT2/N

)K
for some constant c.

Proof. Have the algorithm accept if it findsK or more ‘1’ bits and reject otherwise. Letp(i) be the
expected probability of acceptance ifX is drawn uniformly at random subject to|X|= i. Then we know
the following aboutp:

(i) p(i) ∈ [0,1] at all integer pointsi ∈ {0, . . . ,N}, sincep(i) is a probability.

(ii) p(i) = 0 for all i ∈ {0, . . . ,K−1}, since there are notK marked items to be found.

(iii) p(K)≥ δ .

Furthermore,Lemma 4.1implies thatp is a polynomial ini satisfying deg(p)≤ 2T. It follows from

Lemma 4.5thatT = Ω
(√

Nδ 1/K
)

, or rearranging, thatδ ≤
(
cT2/N

)K
for some constantc.

We can now prove the desired oracle separation using standard complexity theory tricks.

Theorem 4.7. There exists an oracle relative to whichNP 6⊂ BQP/qpoly.

10An earlier version of this paper claimed to prove deg(p) = Ω
(√

NK/ log3/2 (1/δ )
)

, by applyingBernstein’s inequality

[11] rather than A. A. Markov’s to all derivativesp(m). We have since discovered a flaw in that argument. In any case, the
Bernstein lower bound is both unnecessary for an oracle separation, and superseded by the later results of Klauck et al. [22].
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Proof. Given an oracleA : {0,1}∗ → {0,1}, define the languageLA by (y,z) ∈ LA if and only if y≤ z
lexicographically and there exists anx such thaty≤ x≤ z andA(x) = 1. ClearlyLA ∈ NPA for all A.
We argue that for someA, noBQP/qpoly machineM with oracle access toA can decideLA. Without
loss of generality we assumeM is fixed, so that only the advice states{|ψn〉}n≥1 depend onA. We also

assume the advice is boosted, so thatM’s error probability on any input(y,z) is 2−Ω(n2).
Choose a setS⊂ {0,1}n subject to|S| = 2n/10; then for allx∈ {0,1}n, setA(x) = 1 if and only if

x∈ S. We claim that by usingM, an algorithm could find all 2n/10 elements ofSwith high probability
after only 2n/10poly(n) queries toA. Here is how: first use binary search (repeatedly halving the
distance betweeny andz) to find the lexicographically first element ofS. By Lemma 2.2, the boosted

advice state|ψn〉 is good for 2Ω(n2) uses, so this takes only poly(n) queries. Then use binary search to
find the lexicographically second element, and so on until all elements have been found.

Now replace|ψn〉 by the maximally mixed state as inTheorem 3.4. This yields an algorithm that uses
no advice, makes 2n/10poly(n) queries, and finds all 2n/10 elements ofS with probability 2−O(poly(n)).
But takingδ = 2−O(poly(n)), T = 2n/10poly(n), N = 2n, andK = 2n/10, such an algorithm would satisfy
δ �

(
cT2/N

)K
, which violates the bound ofTheorem 4.6.

Indeed one can show thatNP 6⊂ BQP/qpoly relative a random oracle with probability 1.11

5 The Trace Distance Method

This section introduces a new method for proving lower bounds on quantum one-way communication
complexity. Unlike inSection3, here we do not try to simulate quantum protocols using classical ones.
Instead we prove lower bounds for quantum protocols directly, by reasoning about the trace distance
between two possible distributions over Alice’s quantum message (that is, between two mixed states).
The result is a method that works even if Alice’s and Bob’s inputs are the same size.

We first state our method as a general theorem; then, inSection5.1, we apply the theorem to prove
lower bounds for two problems of Ambainis. Let‖D−E‖ denote the variation distance between prob-
ability distributionsD andE.

Theorem 5.1. Let f : {0,1}n×{0,1}m→{0,1} be a total Boolean function. For each y∈ {0,1}m, let
Ay be a distribution over x∈ {0,1}n such that f(x,y) = 1. LetB be a distribution over y∈ {0,1}m, and

let Dk be the distribution over({0,1}n)k formed by first choosing y∈ B and then choosing k samples
independently fromAy. Suppose thatPrx∈D1,y∈B [ f (x,y) = 0] = Ω(1) and that

∥∥D2−D2
1

∥∥≤ δ . Then
Q1

2( f ) = Ω(log1/δ ).

Proof. Suppose that if Alice’s input isx, then she sends Bob thel -qubit mixed stateρx. Suppose also
that for everyx∈ {0,1}n andy∈ {0,1}m, Bob outputsf (x,y) with probability at least 2/3. Then by
amplifying a constant number of times, Bob’s success probability can be made 1− ε for any constant
ε > 0. So withL = O(l) qubits of communication, Bob can distinguish the following two cases with
constant bias:

11First group the oracle bits into polynomial-size blocks as Bennett and Gill [10] do, then use the techniques of Aaronson
[1] to show that the acceptance probability is a low-degree univariate polynomial in the number of all-0 blocks. The rest of
the proof followsTheorem 4.7.
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Case I. y was drawn fromB andx from D1.
Case II. y was drawn fromB andx from Ay.
For in Case I, we assumed thatf (x,y) = 0 with constant probability, whereas in Case II,f (x,y) = 1

always. An equivalent way to say this is that with constant probability overy, Bob can distinguish the
mixed statesρ = EXx∈D1 [ρx] andρy = EXx∈Ay [ρx] with constant bias. Therefore

EX
y∈B

[
‖ρ −ρy‖tr

]
= Ω(1) .

We need an upper bound on the trace distance‖ρ −ρy‖tr that is more amenable to analysis. Let
λ1, . . . ,λ2L be the eigenvalues ofρ −ρy. Then

‖ρ −ρy‖tr =
1
2

2L

∑
i=1

|λi |

≤ 1
2

√√√√2L
2L

∑
i=1

λ 2
i

= 2L/2−1

√√√√ 2L

∑
i, j=1

∣∣∣(ρ)i j − (ρy)i j

∣∣∣2
where(ρ)i j is the(i, j) entry ofρ. Here the second line uses the Cauchy-Schwarz inequality, and the
third line uses the unitary invariance of the Frobenius norm.

We claim that

EX
y∈B

[
2L

∑
i, j=1

∣∣∣(ρ)i j − (ρy)i j

∣∣∣2]≤ 2δ .

From this claim it follows that

EX
y∈B

[
‖ρ −ρy‖tr

]
≤ 2L/2−1 EX

y∈B


√√√√ 2L

∑
i, j=1

∣∣∣(ρ)i j − (ρy)i j

∣∣∣2


≤ 2L/2−1

√√√√EX
y∈B

[
2L

∑
i, j=1

∣∣∣(ρ)i j − (ρy)i j

∣∣∣2]
≤
√

2L−1δ .

Therefore the message lengthL must beΩ(log1/δ ) to ensure that EXy∈B

[
‖ρ −ρy‖tr

]
= Ω(1).

Let us now prove the claim. We have

EX
y∈B

[
2L

∑
i, j=1

∣∣∣(ρ)i j − (ρy)i j

∣∣∣2]=
2L

∑
i, j=1

(∣∣∣(ρ)i j

∣∣∣2−2Re

(
(ρ)∗i j EX

y∈B

[
(ρy)i j

])
+ EX

y∈B

[∣∣∣(ρy)i j

∣∣∣2])

=
2L

∑
i, j=1

(
EX
y∈B

[∣∣∣(ρy)i j

∣∣∣2]− ∣∣∣(ρ)i j

∣∣∣2) ,
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since EXy∈B

[
(ρy)i j

]
= (ρ)i j . For a given(i, j) pair,

EX
y∈B

[∣∣∣(ρy)i j

∣∣∣2]− ∣∣∣(ρ)i j

∣∣∣2 = EX
y∈B

[∣∣∣∣EX
x∈Ay

[
(ρx)i j

]∣∣∣∣2
]
−
∣∣∣∣ EX
x∈D1

[
(ρx)i j

]∣∣∣∣2
= EX

y∈B,x,z∈Ay

[
(ρx)

∗
i j (ρz)i j

]
− EX

x,z∈D1

[
(ρx)

∗
i j (ρz)i j

]
= ∑

x,z

(
Pr
D2

[x,z]−Pr
D2

1

[x,z]

)
(ρx)

∗
i j (ρz)i j .

Now for all x,z, ∣∣∣∣∣ 2L

∑
i, j=1

(ρx)
∗
i j (ρz)i j

∣∣∣∣∣≤ 2L

∑
i, j=1

∣∣∣(ρx)i j

∣∣∣2 ≤ 1.

Hence

∑
x,z

(
Pr
D2

[x,z]−Pr
D2

1

[x,z]

)
2L

∑
i, j=1

(ρx)
∗
i j (ρz)i j ≤∑

x,z

(
Pr
D2

[x,z]−Pr
D2

1

[x,z]

)
= 2

∥∥D2−D2
1

∥∥
≤ 2δ ,

and we are done.

The difficulty in extendingTheorem 5.1to partial functions is that the distributionD1 might not
make sense, since it might assign a nonzero probability to somex for which f (x,y) is undefined.

5.1 Applications

In this subsection we applyTheorem 5.1to prove lower bounds for two problems of Ambainis. To
facilitate further research and to investigate the scope of our method, we state the problems in a more
general way than Ambainis did. Given a groupG, thecoset problemCoset(G) is defined as follows.
Alice is given a left cosetC of a subgroup inG, and Bob is given an elementy∈ G. Bob must output 1
if y∈C and 0 otherwise. By restricting the groupG, we obtain many interesting and natural problems.
For example, ifp is prime then Coset(Zp) is just the equality problem, so the protocol of Rabin and Yao
[31] yieldsQ1

2(Coset(Zp)) = Θ(log logp).

Theorem 5.2. Q1
2

(
Coset

(
Z2

p

))
= Θ(logp).

Proof. The upper bound is obvious. For the lower bound, it suffices to consider a functionfp defined
as follows. Alice is given〈x,y〉 ∈ F2

p and Bob is given〈a,b〉 ∈ F2
p; then

fp(x,y,a,b) =
{

1 if y≡ ax+b(modp)
0 otherwise.
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Let B be the uniform distribution over〈a,b〉 ∈ F2
p, and letAa,b be the uniform distribution over〈x,y〉

such thaty≡ ax+b(modp). ThusD1 is the uniform distribution over〈x,y〉 ∈ F2
p; note that

Pr
〈x,y〉∈D1,〈a,b〉∈B

[ fp(x,y,a,b) = 0] = 1− 1
p
.

But what about the distributionD2, which is formed by first drawing〈a,b〉 ∈B, and then drawing〈x,y〉
and〈z,w〉 independently fromAa,b? Given a pair〈x,y〉 ,〈z,w〉 ∈ F2

p, there are three cases regarding the
probability of its being drawn fromD2:

(1) 〈x,y〉= 〈z,w〉 (p2 pairs). In this case

Pr
D2

[〈x,y〉 ,〈z,w〉] = ∑
〈a,b〉∈F2

p

Pr[〈a,b〉]Pr[〈x,y〉 ,〈z,w〉 | 〈a,b〉]

= p

(
1
p2 ·

1
p2

)
=

1
p3 .

(2) x 6= z (p4− p3 pairs). In this case there exists a unique〈a∗,b∗〉 such thaty≡ a∗x+b∗ (modp) and
w≡ a∗z+b∗ (modp), so

Pr
D2

[〈x,y〉 ,〈z,w〉] = Pr[〈a∗,b∗〉]Pr[〈x,y〉 ,〈z,w〉 | 〈a∗,b∗〉]

=
1
p2 ·

1
p2 =

1
p4 .

(3) x = z buty 6= w (p3− p2 pairs). In this case PrD2 [〈x,y〉 ,〈z,w〉] = 0.

Putting it all together,

∥∥D2−D2
1

∥∥=
1
2

(
p2

∣∣∣∣ 1
p3 −

1
p4

∣∣∣∣+ (p4− p3)∣∣∣∣ 1
p4 −

1
p4

∣∣∣∣+ (p3− p2)∣∣∣∣0− 1
p4

∣∣∣∣)
=

1
p
− 1

p2 .

So takingδ = 1/p−1/p2, we haveQ1
2

(
Coset

(
Z2

p

))
= Ω(log(1/δ )) = Ω(logp) by Theorem 5.1.

We now consider Ambainis’ second problem. Given a groupG and nonempty setS⊂ G with
|S| ≤ |G|/2, thesubset problemSubset(G,S) is defined as follows. Alice is givenx ∈ G and Bob is
giveny∈G; then Bob must output 1 ifxy∈ Sand 0 otherwise.

Let M be the distribution overst−1 ∈ G formed by drawings andt uniformly and independently
from S. Then let∆ = ‖M−D1‖, whereD1 is the uniform distribution overG.

Proposition 5.3. For all G,S such that|S| ≤ |G|/2,

Q1
2(Subset(G,S)) = Ω(log1/∆) .
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Proof. Let B be the uniform distribution overy∈ G, and letAy be the uniform distribution overx such
thatxy∈ S. ThusD1 is the uniform distribution overx∈G; note that

Pr
x∈D1,y∈B

[xy /∈ S] = 1− |S|
|G|

≥ 1
2
.

We have

∥∥D2−D2
1

∥∥=
1
2 ∑

x,z∈G

∣∣∣∣∣ |{y∈G,s, t ∈ S: xy= s,zy= t}|
|G| |S|2

− 1

|G|2

∣∣∣∣∣
=

1
2 ∑

x,z∈G

∣∣∣∣∣
∣∣{s, t ∈ S: xz−1 = st−1

}∣∣
|S|2

− 1

|G|2

∣∣∣∣∣
=

1
2 ∑

x∈G

∣∣∣∣∣
∣∣{s, t ∈ S: x = st−1

}∣∣
|S|2

− 1
|G|

∣∣∣∣∣
=

1
2 ∑

x∈G

∣∣∣∣Pr
M

[x]− 1
|G|

∣∣∣∣
= ‖M−D1‖
= ∆.

Therefore log(1/δ ) = Ω(log1/∆).

Having lower-boundedQ1
2(Subset(G,S)) in terms of 1/∆, it remains only to upper-bound the varia-

tion distance∆. The following proposition implies that for all constantsε > 0, if S is chosen uniformly
at random subject to|S| = |G|1/2+ε , thenQ1

2(Subset(G,S)) = Ω(log(|G|)) with constant probability
overS.

Theorem 5.4. For all groups G and integers K∈ {1, . . . , |G|}, if S⊂ G is chosen uniformly at random

subject to|S|= K, then∆ = O
(√

|G|/K
)

with Ω(1) probability over S.

Proof. We have

∆ =
1
2 ∑

x∈G

∣∣∣∣Pr
M

[x]− 1
|G|

∣∣∣∣≤
√
|G|
2

√
∑
x∈G

(
Pr
M

[x]− 1
|G|

)2

by the Cauchy-Schwarz inequality. We claim that

EX
S

[
∑
x∈G

(
Pr
M

[x]− 1
|G|

)2
]
≤ c

K2

for some constantc. From this it follows by Markov’s inequality that

Pr
S

[
∑
x∈G

(
Pr
M

[x]− 1
|G|

)2

≥ 2c
K2

]
≤ 1

2

THEORY OFCOMPUTING, Volume 1 (2005), pp. 1–28 21



SCOTT AARONSON

and hence

∆ ≤
√
|G|
2

√
2c
K2 = O

(√
|G|
K

)
with probability at least 1/2.

Let us now prove the claim. We have

Pr
M

[x] = Pr
i, j

[
sis

−1
j = x

]
= Pr

i, j
[si = xsj ] ,

whereS= {s1, . . . ,sK} andi, j are drawn uniformly and independently from{1, . . . ,K}. So by linearity
of expectation,

EX
S

[
∑
x∈G

(
Pr
M

[x]− 1
|G|

)2
]

= EX
S

[
∑
x∈G

((
Pr
i, j

[si = xsj ]
)2

− 2
|G|

Pr
i, j

[si = xsj ]+
1

|G|2

)]

= ∑
x∈G

(
1

K4

K

∑
i, j,k,l=1

px,i jkl

)
− 2
|G| ∑

x∈G

(
1

K2

K

∑
i, j=1

px,i j

)
+

1
|G|

where

px,i j = Pr
S

[si = xsj ] ,

px,i jkl = Pr
S

[si = xsj ∧sk = xsl ] .

First we analyzepx,i j . Let ord(x) be the order ofx in G. Of theK2 possible ordered pairs(i, j), there
areK pairs with the “pattern”ii (meaning thati = j), andK (K−1) pairs with the patterni j (meaning
that i 6= j). If ord(x) = 1 (that is,x is the identity), then we havepx,i j = PrS[si = sj ], sopx,i j = 1 under
the patternii , andpx,i j = 0 under the patterni j . On the other hand, if ord(x) > 1, thenpx,i j = 0 under
the patternii , andpx,i j = 1

|G|−1 under the patterni j . So

1
K2 ∑

x∈G

K

∑
i, j=1

px,i j =
1

K2

(
K +(|G|−1)

K (K−1)
|G|−1

)
= 1.

Though unnecessarily cumbersome, the above analysis was a warmup for the more complicated case
of px,i jkl . The following table lists the expressions forpx,i jkl , given ord(x) and the pattern of(i, j,k, l).

Pattern Number of such 4-tuplesord(x) = 1 ord(x) = 2 ord(x) > 2
iiii , iikk K2 1 0 0
i ji j K (K−1) 0 1

|G|−1
1

|G|−1

i j ji K (K−1) 0 1
|G|−1 0

iiil , iiki , i jii , i j j j 4K (K−1) 0 0 0
i jki , i j jk 2K (K−1)(K−2) 0 0 1

(|G|−1)(|G|−2)
iikl , i jkk, i jik , i jk j 4K (K−1)(K−2) 0 0 0
i jkl K (K−1)(K−2)(K−3) 0 1

(|G|−1)(|G|−3)
1

(|G|−1)(|G|−3)
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Let r be the number ofx ∈ G such that ord(x) = 2, and letr ′ = |G| − r − 1 be the number such that
ord(x) > 2. Then

1
K4 ∑

x∈G

K

∑
i, j,k,l=1

px,i jkl =
1

K4

(
K2 +(2r + r ′) K(K−1)

|G|−1 +2r ′ K(K−1)(K−2)
(|G|−1)(|G|−2)

+(r + r ′) K(K−1)(K−2)(K−3)
(|G|−1)(|G|−3)

)

≤ 1
|G|−3

+O

(
1

K2

)
using the fact thatK ≤ |G|.

Putting it all together,

EX
S

[
∑
x∈G

(
Pr
M

[x]− 1
|G|

)2
]
≤ 1
|G|−3

+O

(
1

K2

)
− 2
|G|

+
1
|G|

= O

(
1

K2

)
and we are done.

From fingerprinting we also have the following upper bound. Letq be the periodicity ofS, defined
as the number of distinct setsgS= {gs: s∈ S} whereg∈G.

Proposition 5.5. R1
2(Subset(G,S)) = O(log|S|+ log logq).

Proof. Assume for simplicity thatq= |G|; otherwise we could reduce to a subgroupH ≤G with |H|= q.

The protocol is as follows: Alice draws a uniform random primep from the range
[
|S|2 log2 |G| ,2|S|2 log2 |G|

]
;

she then sends Bob the pair(p,xmodp) wherex is interpreted as an integer. This takesO(log|S|+ log log|G|)
bits. Bob outputs 1 if and only if there exists az∈G such thatzy∈ Sandx≡ z(modp). To see the pro-
tocol’s correctness, observe that ifx 6= z, then there at most log|G| primesp such thatx−z≡ 0(modp),

whereas the relevant range containsΩ
(

|S|2 log2|G|
log(|S| log|G|)

)
primes. Therefore, ifxy /∈ S, then by the union

bound

Pr
p

[∃z : zy∈ S,x≡ z(modp)] = O

(
|S| log|G| log(|S| log|G|)

|S|2 log2 |G|

)
= o(1) .

6 Open Problems

• Are R1
2( f ) andQ1

2( f ) polynomially related for every total Boolean functionf ? Also, can we
exhibit any asymptotic separation between these measures? The best separation we know of
is a factor of 2: for the equality function we haveR1

2(EQ) ≥ (1−o(1)) log2n, whereas Win-
ter [37] has shown thatQ1

2(EQ) ≤ (1/2+o(1)) log2n using a protocol involving mixed states.12

This factor-2 savings is tight for equality: a simple counting argument shows thatQ1
2(EQ) ≥

12If we restrict ourselves to pure states, then(1−o(1)) log2n qubits are needed. Based on that fact, a previous version of
this paper claimed incorrectly thatQ1

2 (EQ)≥ (1−o(1)) log2n.
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(1/2−o(1)) log2n; and although the usual randomized protocol for equality [31] uses(2+o(1)) log2n
bits, there exist protocols based on error-correcting codes that use only log2(cn) = log2n+O(1)
bits. All of this holds for any constant error probability 0< ε < 1/2.

• As a first step toward answering the above questions, can we lower-boundQ1
2(Coset(G)) for

groups other thanZ2
p (such asZn

2, or nonabelian groups)? Also, can we characterizeQ1
2(Subset(G,S))

for all setsS, closing the gap between the upper and lower bounds?

• Is there an oracle relative to whichBQP/poly 6= BQP/qpoly?

• Can we give oracles relative to whichNP∩ coNP andSZK are not contained inBQP/qpoly?
Bennett et al. [8] gave an oracle relative to whichNP∩ coNP 6⊂ BQP, while Aaronson [1] gave
an oracle relative to whichSZK 6⊂ BQP.

• Even more ambitiously, can we prove a direct product theorem for quantum query complexity that
applies to any partial or total function (not just search)?

• For all f (partial or total), isR1
2( f ) = O(

√
n) wheneverQ1

2( f ) = O(logn)? In other words, is the
separation of Bar-Yossef et al. [6] the best possible?

• Can the resultD1( f ) = O
(
mQ1

2( f ) logQ1
2( f )

)
for partial f be improved toD1( f ) = O

(
mQ1

2( f )
)
?

We do not even know how to rule outD1( f ) = O
(
m+Q1

2( f )
)
.

• In the Simultaneous Messages (SM) model, there is no direct communication between Alice and
Bob; instead, Alice and Bob both send messages to a third party called thereferee, who then
outputs the function value. The complexity measure is the sum of the two message lengths.
Let R||2 ( f ) andQ||

2 ( f ) be the randomized and quantum bounded-error SM complexities off re-

spectively, and letR||,pub
2 ( f ) be the randomized SM complexity if Alice and Bob share an arbi-

trarily long random string. Building on work by Buhrman et al. [12], Yao [40] showed that
Q||

2 ( f ) = O(logn) wheneverR||,pub
2 ( f ) = O(1). He then asked about the other direction: for some

ε > 0, doesR||,pub
2 ( f ) = O

(
n1/2−ε

)
wheneverQ||

2 ( f ) = O(logn), and doesR||2 ( f ) = O
(
n1−ε

)
wheneverQ||

2 ( f ) = O(logn)? In an earlier version of this paper, we showed thatR||2 ( f ) =

O
(√

n
(

R||,pub
2 ( f )+ logn

))
, which means that a positive answer to Yao’s first question would

imply a positive answer to the second. Later we learned that Yao independently proved the same
result [39].

Here we ask a related question: canQ||
2 ( f ) ever be exponentially smaller thanR||,pub

2 ( f )? (Buhrman

et al. [12] showed thatQ||
2 ( f ) can be exponentially smaller thanR||2 ( f ).) Iordanis Kerenidis has

pointed out to us that, based on the hidden matching problem of Bar-Yossef et al. [6] discussed
in Section2, one can define arelation for which Q||

2 ( f ) is exponentially smaller thanR||,pub
2 ( f ).

However, as in the case ofQ1
2( f ) versusR1

2( f ), it remains to extend that result to functions.
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