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1 Introduction

Fourier transforms are widely used in mathematics, computer science, and engineering. Examples in-
clude signal processing, data compression, fast multiplication of polynomials, quantum computing, as
well as many others. The Fourier transform most commonly used is the one over cyclic groups. Here
one decomposes a signal or function as a sum of periodic functions such as χy(x) = e2πixy/n or (in the
real case) sines and cosines.

In the study of functions of n Boolean variables, however, the most natural Fourier transform to
consider is the one over the Abelian group Zn

2. This is known as Fourier analysis over the Boolean cube,
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and has over the past two decades become one of the most important and versatile tools for theoretical
computer scientists. The main purpose of this paper is to give a first introduction to the basic notions
and properties of this area (Section 2) and to illustrate and motivate them by means of a few relatively
simple but elegant applications from diverse areas (Section 3 and Section 4). The intended audience is
theoretical computer scientists interested in adding these techniques to their toolbox. The selection of
applications is somewhat biased by the author’s own experience in learning this material in recent years,
and is by no means a complete survey—such a survey would probably require a whole book by now.
However, in Section 5 we give pointers for further reading.

2 Definitions and basic properties

2.1 The vector space of functions on the Boolean cube

Consider the 2n-dimensional vector space of all functions f : {0,1}n → R. We define an inner product
on this space by

〈 f ,g〉=
1
2n ∑

x∈{0,1}n

f (x)g(x) = E[ f ·g] ,

where the latter expectation is taken uniformly over all x ∈ {0,1}n. This defines the `2-norm

|| f ||2 =
√
〈 f , f 〉=

√
E[ f 2] .

2.2 The Fourier transform

It will be convenient to identify a set S ⊆ [n] = {1, . . . ,n} with its characteristic vector S ∈ {0,1}n. For
example for S = {1,3} ⊆ [3] we can also write S = (1,0,1) or S = 101. We will often go back and forth
between these notations. For each S ⊆ [n], define a function χS : {0,1}n →{±1} by

χS(x) = (−1)S·x ,

where S · x = ∑
n
i=1 Sixi = ∑i∈S xi. It is easy to see that

〈χS,χT 〉= δST =

{
1 if S = T
0 if S 6= T

,

hence the set of all χS is an orthonormal basis (called the Fourier basis) for the space of all real-valued
functions on {0,1}n. Of course, there are many different bases for this space. What makes the Fourier
basis particularly useful for computer science is that the basis functions themselves have a simple com-
putational interpretation, namely as parity functions: χS(x) = −1 if the number of S-variables having
value 1 in the input x is odd, and χS(x) = 1 if that number is even.

For any f : {0,1}n → R we can define another function f̂ : {0,1}n → R by

f̂ (S) = 〈 f ,χS〉= E[ f ·χS] .
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The linear map

F : f 7→ f̂

is called the Fourier transform. The function f̂ = F( f ) is the Fourier transform of f , and f̂ (S) is the
Fourier coefficient of f at S. This f̂ (S) may be viewed as a measure of the correlation between f and χS.
The set of Fourier coefficients is also called the Fourier spectrum of f . Since the χS form an orthonormal
basis, the relation between f and f̂ is

f = ∑
S

f̂ (S)χS . (2.1)

Note that f ( /0) = ∑S f̂ (S) is the sum of all Fourier coefficients, while f̂ ( /0) = E[ f ] is the average function
value. A function is constant if, and only if, f̂ (S) = 0 for all S 6= /0.

The degree of f is deg( f ) = max{|S| | f̂ (S) 6= 0}. In particular the degree of the basis function χS

is |S|, the number of variables it depends on. Since (−1)xi = 1− 2xi, the Fourier expansion Eq. (2.1)
represents f as an n-variate polynomial over the real numbers, of degree deg( f ).

Let us consider some simple examples. If f = χS then f̂ (S) = 1 while all other Fourier coefficients
are 0. If f (x) = ∑i∈S xi mod 2 is a parity function in the usual 0/1 notation, then f̂ ( /0) = 1/2 and f̂ (S) =
−1/2; all other coefficients are 0. The special case where S = {i} (i. e., f (x) = xi) is known as a dictator
function, since its value is determined by only one variable. A k-junta is a function depending on at
most k variables; equivalently, there is a set J ⊆ [n] of size k such that f̂ (S) = 0 whenever S 6⊆ J. Finally,
if we pick a function f : {0,1}n →{±1} uniformly at random, then each Fourier coefficient is normally
distributed with mean 0 and variance 1/2n, so much coefficients will be about 1/

√
2n in absolute value.

Because the χS form an orthonormal basis, we immediately get the following equality:

〈 f ,g〉= ∑
S,T

f̂ (S)ĝ(T )〈χS,χT 〉= ∑
S

f̂ (S)ĝ(S) .

In particular, with f = g we obtain Parseval’s Identity:

|| f ||22 = ∑
S

f̂ (S)2 .

This also implies

|| f −g||22 = ∑
S

( f̂ (S)− ĝ(S))2 .

As an example, suppose f is a probability distribution. Then we can analyze the `2-distance between f
and the uniform distribution g(x) = 1/2n as follows:

|| f −g||22 = ∑
S

( f̂ (S)− ĝ(S))2 = ∑
S 6= /0

f̂ (S)2 ,

where we used f̂ ( /0) = ĝ( /0) = 1/2n, and ĝ(S) = 0 whenever S 6= /0.
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Notational variants. The definition of F used here has become the standard one in computer science,
though one occasionally sees different normalizations. If we defined the inner product with a 2−n/2

instead of 2−n, then F would be its own inverse and Parseval would simply state || f ||2 = || f̂ ||2. However,
with this modified inner product the χS functions no longer have norm 1.

Another variation is to view the variables as ±1-valued instead of 0/1-valued and to consider func-
tions on {±1}n. In this case the function χS is simply the product of the S-variables, and the Fourier
representation is simply an n-variate multilinear polynomial over the reals, with f̂ (S) as the coefficient of
the monomial χS. Similarly, depending on what is more convenient, we can treat the value of a Boolean
function as 0/1-valued or as ±1-valued. An advantage of the latter is that ∑S f̂ (S)2 = E[ f 2] = 1 (by
Parseval), which allows us to treat the squared Fourier coefficients as probabilities.

2.3 Convolution

Given any two functions f ,g : {0,1}n → R, we define their convolution f ∗g : {0,1}n → R by

( f ∗g)(x) =
1
2n ∑

y∈{0,1}n

f (x⊕ y)g(y) ,

where ‘⊕’ denotes entrywise addition of n-bit strings. If X and Y are independent n-bit random variables,
with probability distributions f and g, respectively, then 2n( f ∗ g) is the distribution of the random
variable Z = X ⊕Y :

Pr[Z = z] = Pr[X = z⊕Y ] = ∑
y∈{0,1}n

f (z⊕ y)g(y) .

This arises naturally in certain computer-science settings, for instance when Y is some error-pattern
corrupting X , or when Y is some “mask” used to hide X as in one-time pad encryption.

An important property is that the Fourier transform of the convolution f ∗ g is the product of the
Fourier transforms of f and g. This is easily verified by writing out the definitions:

f̂ ∗g(S) =
1
2n ∑

x
( f ∗g)(x)χS(x)

=
1

22n ∑
x

∑
y

f (x⊕ y)g(y)χS(x)

=
1
2n ∑

y
g(y)χS(y)

(
1
2n ∑

x
f (x⊕ y)χS(x⊕ y)

)
= f̂ (S) · ĝ(S) .

Suppose we have two functions h0 = f ∗g0 and h1 = f ∗g1, for instance from applying the same noise-
process f to distributions g0 and g1. Using the convolution, we can rewrite their distance as

||h0−h1||22 = || f ∗ (g0−g1)||22 = ∑
S

̂( f ∗ (g0−g1))(S)2 = ∑
S

f̂ (S)2 · (ĝ0(S)− ĝ1(S))2 .

This allows us to bound the difference between h0 and h1 by analyzing f̂ and ĝ0− ĝ1.
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3 Some elementary applications

3.1 Approximating functions by parities

It is often useful to approximate complex objects by much simpler ones. Consider any function f :
{0,1}n → [−1,1]. Suppose there exists a function p : {0,1}n → [−1,1] that has some positive correla-
tion 〈 f , p〉 ≥ ε with f , and suppose p is sparse in that the set C = {S | p̂(S) 6= 0} of nonzero Fourier
coefficients has at most c elements. A typical example is where f is a Boolean function and p a low-
degree real polynomial approximating f , since degree-d polynomials have at most c = ∑

d
i=0

(n
i

)
nonzero

Fourier coefficients. Now there exists a parity function that has nontrivial correlation with f , as follows:

ε ≤ 〈 f , p〉= ∑
S

p̂(S)〈 f ,χS〉 ≤ ||p||2
√

∑
S∈C

〈 f ,χS〉2 ,

where we used Cauchy-Schwarz and Parseval. This implies there exists an S such that either χS or its
negation has correlation |〈 f ,χS〉| ≥ ε/(||p||2

√
c)≥ ε/

√
c with f .

3.2 List decoding the Hadamard code

Error-correcting codes are important for storing and sending information in a way that protects against
errors. Consider the Hadamard code: for a given S ∈ {0,1}n, the codeword H(S) ∈ {±1}2n

is defined
as the concatenation of χS(x) for all x, say ordered in lexicographic order. This code has a terrible
rate: n-bit strings are blown up exponentially in size. On the other hand, it has excellent distance: any
two codewords are at distance exactly 1

2 2n. This means that we can always uniquely decode the initial
string S from a given word w ∈ {±1}2n

that differs from the codeword H(S) in less than 1/4 of the
positions. This is easily phrased in terms of Fourier analysis. View w as a function w : {0,1}n →{±1}.
Note that ∑S ŵ(S)2 = E[w2] = 1 by Parseval. Then w has normalized distance d(w,H(S)) = 1/2− ε

from codeword H(S) if, and only if, ŵ(S) = 2ε . If the error-rate is less than 1/4 (ε > 1/4) then the
original string is the unique S satisfying ŵ(S) > 1/2. (There cannot be two distinct S and S′ with
Fourier coefficients larger than 1/2, since then by the triangle inequality we would have the contradiction
1/2 = d(H(S),H(S′))≤ d(H(S),w)+d(w,H(S′)) < 1/2.)

However, as soon as the error-rate is 1/4 or higher, unique decoding is no longer always possible.
For instance the word w that consists of 3

4 2n 1s followed by 1
4 2n −1s could either have come from

H(0n) = 12n
or from H(10n−1) = 12n−1

(−1)2n−1
. Surprisingly, we can still do something useful even if

the error-rate is very close to 1/2, say 1/2− ε for small but positive ε: we can output a small list of
potential strings that contains the original string S. This is known as list decoding. It does not quite tell
us what the original string was, but at least narrows it down to a small set of possibilities. The reason
is that not too many codewords H(S) can simultaneously be at a distance ≤ 1/2− ε from w: such S
correspond to Fourier coefficients ŵ(S) ≥ 2ε , and not too many Fourier coefficients can be that large
since their squares sum to 1. More formally:

#{S : d(H(S),w)≤ 1/2− ε} ≤ 1
4ε2 ∑

S:d(w,H(S))≤1/2−ε

ŵ(S)2 ≤ 1
4ε2 ∑

S
ŵ(S)2 =

1
4ε2 .
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Note that this upper bound on the list size is independent of n. For instance, if we have error-rate 0.49
(so w is close to random), then still the list of potential codewords has at most 1

4(0.01)2 = 2500 elements.
In fact, Goldreich and Levin [28] showed that we can efficiently, in time poly(n,1/ε), find this list,
given oracle access to the 2n-bit string w. This was the first non-trivial list-decoding algorithm. Later
work by Sudan, Guruswami, and others showed similar results for many codes with good rates, see for
instance [66, 30] and the references therein.

3.3 Learning under the uniform distribution

A lot of work in the last two decades has used the Fourier transform for learning under the uniform
distribution. The idea is that we can learn an unknown function f : {0,1}n → R by approximating its
Fourier coefficients. Since the Fourier coefficient

f̂ (S) = E[ f ·χS]

is just an expectation under the uniform distribution on {0,1}n, we can approximate it from uniformly
drawn examples (x1, f (x1)), . . . ,(xm, f (xm)). The empirical average

1
m

m

∑
j=1

f (x j) ·χS(x j)

will converge to the right value f̂ (S) as m grows, and the Chernoff bound tells us how quickly this
convergence happens.

Suppose we know f is dominated by a few large Fourier coefficients, and we know a not-too-large
set containing those coefficients. A typical case is where f can be approximated by a real polynomial
of low degree d. Then we can approximate those coefficients quickly with a small sample size m, and
hence learn a good approximation of f . If αS is our estimate for f̂ (S) and h = ∑S αSχS the hypothesis
that we output, then by Parseval our overall `2-error is

|| f −h||22 = ∑
S

( f̂ (S)−αS)2 .

When f has range {±1}, we can use sign(h) as our hypothesis for f . We have

Pr[ f (x) 6= sign(h(x))] =
1
2n ∑

x: f (x)6=sign(h(x))
1 ≤ 1

2n ∑
x: f (x)6=sign(h(x))

( f (x)−h(x))2 ≤ || f −h||22 .

These ideas have been used for learning constant-depth circuits [46], for learning DNF [48, 32, 43, 13],
juntas [50], decision trees [44, 57], and others.

4 The Bonami-Beckner inequality and some of its consequences

4.1 Bonami-Beckner and KKL

Consider a function f : {0,1}n → R. Suppose its input x ∈ {0,1}n is “noisy:” a new input y is obtained
by flipping, independently, each bit of x with a fixed probability ε ∈ [0,1]. The resulting noisy version
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of f is
f̃ (x) = Ey[ f (y)] .

Noise has a smoothing effect: sharp peaks in f will be “smeared out” over nearby inputs. Consider for
instance a function that is non-zero only on input 0n: f (0n) = 1 and f (x) = 0 for all x 6= 0n. Then f̃
is a fairly smooth probability distribution “around” 0n: f̃ (x) = ε |x|(1− ε)n−|x|. If ε ∈ (0,1/2) then the
maximum of f̃ still occurs at 0n, but f̃ is much less sharply peaked than the original f .

Now consider the linear map that takes f to f̃ . Applying this map to the function f defined by
f (x) = (−1)xi gives f̃ (x) = (1− ε)(−1)xi + ε(−1)1−xi = (1− 2ε)(−1)xi . Similarly, applying it to χS

gives (1−2ε)|S|χS. Hence our map is a function Tρ that merely shrinks the Fourier coefficient f̂ (S) by
a factor ρ |S|, where ρ = 1−2ε ∈ [−1,1]:

f̃ = Tρ( f ) = ∑
S

ρ
|S| f̂ (S)χS.

Here we can see the smoothing effect in action: Tρ attenuates the higher-degree Fourier coefficients, thus
moving f closer to a constant function. For ρ < 1, the constant f are the only ones satisfying Tρ( f ) = f .

Generalizing the `2-norm, for every p ≥ 1 we define the p-norm of a function by

|| f ||p =
(

1
2n ∑

x
| f (x)|p

)1/p

.

One can show this is monotone non-decreasing in p. Since Tρ( f ) is an average of functions that all have
the same p-norm as f , the triangle inequality immediately implies that Tρ is a contraction: for every
p ≥ 1 we have ||Tρ( f )||p ≤ || f ||p. The Bonami-Beckner Hypercontractive Inequality [10, 29, 6] says
that this inequality remains true even if we increase the left-hand side by going to a somewhat higher
q-norm:

Theorem 4.1 (Bonami-Beckner). If 1 ≤ p ≤ q and 0 ≤ ρ ≤
√

(p−1)/(q−1), then

||Tρ( f )||q ≤ || f ||p .

This inequality is a crucial tool in most of the more advanced applications of Fourier analysis on
the Boolean cube. The case ρ =

√
(p−1)/(q−1) is the strongest case, and implies all others by

monotonicity of the p-norm. Its proof is by induction on n. The base case (n = 1) is actually the harder
part of the induction. We refer to Lecture 16 of [53] for a proof as well as some background and history.
Chapter 5 of the book of Janson [33] gives a more general treatment of hypercontractivity.

For us the most interesting cases are when either p or q equal 2, since Parseval allows us to rewrite
the 2-norm in terms of Fourier coefficients. This leads to interesting statements about the relations
between various norms of f . For instance, suppose the degree of f is at most d. Then for all p ∈ [1,2],
and using q = 2 and ρ =

√
p−1, we have

(p−1)d || f ||22 = (p−1)d
∑
S

f̂ (S)2 ≤∑
S

(p−1)|S| f̂ (S)2 = ||T√p−1( f )||22 ≤ || f ||2p .

Hence the p-norm of a low-degree function cannot be much smaller than its 2-norm. A similar argument
gives || f ||2q ≤ (q−1)d || f ||22 for all q ≥ 2.
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In general, with q = 2, p ∈ [1,2], and ρ =
√

p−1, Theorem 4.1 becomes

∑
S

(p−1)|S| f̂ (S)2 = ||Tρ( f )||22 ≤ || f ||2p =
(

1
2n ∑

x
| f (x)|p

)2/p

. (4.1)

This gives an upper bound on the squared Fourier coefficients of f , in a way that gives most weight to
the low-degree coefficients: each coefficient is “weighed down” by (p− 1)|S|.1 An important special
case of Eq. (4.1) is where f has range {−1,0,1}. This occurs for instance if f is a Boolean function or
the difference of two Boolean functions. In that case we have || f ||pp = Pr[ f 6= 0] for any p. Applying
Eq. (4.1) with p = 1+δ gives the following KKL Inequality, after Kahn, Kalai, and Linial [34].

Corollary 4.2 (KKL). For every δ ∈ [0,1] and f : {0,1}n →{−1,0,1}, we have

∑
S

δ
|S| f̂ (S)2 ≤ (Pr[ f 6= 0])2/(1+δ ).

Informally, with δ < 1 the left-hand side is dominated by the Fourier coefficients of low degree
(i. e., those where |S| is small). The right-hand side is smaller than the total “Fourier weight” ∑S f̂ (S)2 =
Pr[ f 6= 0] by a power 2/(1 + δ ) > 1. Hence the inequality says that a {−1,0,1}-valued function with
small support cannot have too much of its Fourier weight on low degrees.

4.2 Random parities over a fixed set

An application for which KKL seems to be almost tailor-made, is to bound the expected bias of k-bit
parities over a set A ⊆ {0,1}n. Suppose we pick a set S ⊆ [n] of k indices uniformly at random, and
consider the parity of the k-bit substring induced by S and a uniformly random x ∈ A. Intuitively, if A
is large then we expect that for most S, the bias βS of this parity to be small: the number of x ∈ A with
χS(x) = 1 should be roughly the same as with χS(x) = −1. This setting is relevant to cryptography.
Suppose we have an n-bit string x about which our adversary has some limited knowledge: he only
knows that x is uniformly distributed over some fairly large set A. Then our adversary will be unable to
predict most parities of selected bits from x, and we can use such parities to obtain bits that are essentially
unknown to him. We ourselves do not need to know A for this; we only need to know a lower bound on
its size, i. e., an upper bound on the adversary’s knowledge.

The intuition that large A leads to small biases is justified by the KKL Inequality.2 Note the connec-
tion between biases and Fourier coefficients: with f the characteristic function of A, we have

βS = Ex∈A[χS(x)] =
1
|A| ∑

x∈A
χS(x) =

1
|A| ∑

x∈{0,1}n

f (x)χS(x) =
2n

|A|
f̂ (S) .

Applying the KKL Inequality, for any δ ∈ [0,1] we can bound the sum of squared biases by

∑
S∈([n]

k )
β

2
S =

22n

|A|2 ∑
S∈([n]

k )
f̂ (S)2 ≤ 22n

δ k|A|2

(
|A|
2n

)2/(1+δ )

≤ 1
δ k

(
2n

|A|

)2δ

.

1Recently Eq. (4.1) was generalized from real-valued functions to matrix-valued functions [7].
2To the best of our knowledge, the bound below was first shown by Talagrand [68, Eq. (2.9)] for k = 2, using a large

deviation inequality instead of hypercontractivity, and for general k in [27] using the KKL Inequality. [27] used it to prove
lower bounds for communication complexity.
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By differentiating, one can show that δ = k/[2ln(2n/|A|)] minimizes the right-hand side (assume k ≤
2ln(2n/|A|) to ensure δ ∈ [0,1]). This gives

ES[β 2
S ] =

1(n
k

) ∑
S∈([n]

k )
β

2
S = O

(
log(2n/|A|)

n

)k

. (4.2)

The following example shows this bound is essentially tight, and hence the KKL Inequality is tight as
well. Let A = 0c ×{0,1}n−c consist of all 2n−c strings starting with c zeroes. Then βS = 1 if S ⊆ [c],
and βS = 0 otherwise. The fraction of sets S ∈

([n]
k

)
satisfying S ⊆ [c] is

(c
k

)
/
(n

k

)
= Ω(c/n)k. Hence

ES[β 2
S ] = Ω(c/n)k = Ω(log(2n/|A|)/n)k, matching the upper bound of Eq. (4.2).

4.3 Influences of variables

Suppose we have n players, and we have a function f : {0,1}n →{0,1}where player i controls the bit xi.
If f is balanced (meaning exactly half of the 2n inputs x yield f (x) = 1), then we can use it to implement
a collective coin flipping scheme: let each player pick their bit xi randomly and use f (x) as the value of
the coin flip. If all players indeed follow this protocol, the result is a fair coin flip. However, in order for
this to be secure, small collusions of cheating players who can see the bits of the honest players should
not be able to influence the function’s output value too much.

Formally, the influence of variable i ∈ [n] on f is defined as

Infi( f ) = Pr[ f (x) 6= f (x⊕ ei)] ,

where the probability is over uniform x ∈ {0,1}n, and x⊕ ei is x with the ith bit flipped. This measures
the probability (over random bits for all other players) that player i can determine the function value.
One can generalize this definition to the influence of a set S of players in the obvious way: InfS( f ) is
the probability that the function is non-constant when all variables outside of S are set randomly. Two
extreme cases are the constant function (where Infi( f ) = 0 for all i), and the parity function (where
Infi( f ) = 1 for all i). For the dictator function f (x) = xi, the ith variable has influence 1 while all other
influences are 0. Another important example is the n-bit majority function, which is 1 if more than half
of its input bits are 1, and which is 0 otherwise. Here each variable has influence Θ(1/

√
n), because

the probability that the other n− 1 bits are set such that xi determines the majority value is exactly( n−1
bn/2c

)
/2n−1. Moreover, any set S of, say, 10

√
n variables will with high probability be able to “tip the

balance” and determine the majority value when the other n−10
√

n input bits are set randomly, hence
InfS( f )≈ 1.

Can we find balanced functions where the influences of the variables are much smaller, ideally
O(1/n)? Ben-Or and Linial [8] showed that the “tribes” function (an OR-AND tree with bottom fan-out
about logn− log logn) is a balanced function where every variable has influence Θ(log(n)/n). Kahn,
Kalai, and Linial [34] later showed that this is essentially optimal: for every Boolean function f that is
balanced or close to balanced, at least one of its variables has influence Ω(log(n)/n). With some extra
work (which we won’t detail here), this implies the existence of a set of only O(n/ logn) variables that
together determine the function value for almost all settings of the other variables. Hence we cannot hope
to use such functions for collective coin flipping protocols that are secure against a constant fraction of
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cheating players: a small set of O(n/ logn) colluding players can already control the outcome with high
probability.

The KKL result was one of the first major applications of Fourier analysis to Boolean functions.
We will prove a slightly stronger result here due to Talagrand [67]. Let Var[ f ] = E[ f 2]−E[ f ]2 be the
variance of f . By Parseval, this equals || f ||22− f̂ ( /0)2 = ∑S 6= /0 f̂ (S)2. Consider a function f : {0,1}n →
{0,1}. Assume that no variable has influence exactly 0 or 1 (influence-0 variables are irrelevant anyway,
and influence-1 variables can be “factored” out of the function). Then we have

n

∑
i=1

Infi( f )
log(1/Infi( f ))

= Ω(Var[ f ]). (4.3)

The KKL result follows immediately from this: if f is close to balanced then Var[ f ] = Ω(1). Hence
there is an i such that Infi( f )/ log(1/Infi( f )) = Ω(1/n), which implies Infi( f ) = Ω(log(n)/n).

The proof of Eq. (4.3) is based on the following technical lemma, which uses Bonami-Beckner.

Lemma 4.3. If g : {0,1}n → R satisfies ||g||3/2 6= ||g||2, then

∑
S 6= /0

ĝ(S)2

|S|
≤ 2.5 ||g||22

log(||g||2/||g||3/2)
.

Proof. Using Theorem 4.1 with q = 2 and p = 1+ρ2 = 3/2 we get for every integer k

∑
S:|S|=k

ĝ(S)2 ≤ 2k
∑
S

2−|S|ĝ(S)2 = 2k||T√1/2(g)||22 ≤ 2k||g||23/2 .

For every integer m we have (using ∑
m
k=1 2k/k ≤ 4 ·2m/(m+1), which is easily proved by induction):

∑
S 6= /0

ĝ(S)2

|S|
=

m

∑
k=1

∑
S:|S|=k

ĝ(S)2

k
+ ∑

S:|S|>m

ĝ(S)2

|S|
≤

m

∑
k=1

2k||g||23/2

k
+ ∑

S:|S|>m

ĝ(S)2

m+1
≤

4 ·2m||g||23/2 + ||g||22
m+1

Choose m the largest integer satisfying 2m||g||23/2 ≤ ||g||22. Then m+1 > 2log(||g||2/||g||3/2), and

∑
S 6= /0

ĝ(S)2

|S|
≤ 5 ||g||22

m+1
≤ 2.5 ||g||22

log(||g||2/||g||3/2)
.

Now consider a variable i and define g(x) = f (x)− f (x⊕ei). Then g(x) = 0 if f (x) = f (x⊕ei), and
g(x) ∈ {±1} otherwise. Hence ||g||22 = ||g||3/2

3/2 = Infi( f ) ∈ (0,1), and ||g||2/||g||3/2 = Infi( f )−1/6. The
Fourier coefficients of g are closely related to those of f :

ĝ(S) =

{
2 f̂ (S) if i ∈ S,
0 otherwise.

(4.4)
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Applying Lemma 4.3 to g gives

∑
S:i∈S

4 f̂ (S)2

|S|
= ∑

S

ĝ(S)2

|S|
≤ 2.5 ||g||22

log(||g||2/||g||3/2)
=

15Infi( f )
log(1/Infi( f ))

.

Summing over all i gives Talagrand’s result:

4Var[ f ] = 4 ∑
S 6=0

f̂ (S)2 =
n

∑
i=1

∑
S:i∈S

4 f̂ (S)2

|S|
≤

n

∑
i=1

15Infi( f )
log(1/Infi( f ))

.

Subsequent work. The subsequent “BKKKL” paper [12] generalized the KKL result to the case of
functions f : [0,1]n →{0,1} with real-valued input, with uniform measure on each real-valued variable
xi. See Friedgut [23] for some simplifications and corrections of this. A recent related result is that any
near-balanced Boolean function with a depth-d decision tree has a variable with influence Ω(1/d) [55].

4.4 The relation between influences, sensitivity, and degree

In this section we relate influences to degree and sensitivity, both of which are important measures of
the complexity of Boolean functions.3 The sensitivity of a function f : {0,1}n →{0,1} on input x is

sx( f ) = |{i | f (x) 6= f (x⊕ ei)}|

and the average sensitivity of f is

s( f ) =
1
2n ∑

x∈{0,1}n

sx( f ) .

By linearity of expectation, average sensitivity equals the total influence:

s( f ) =
n

∑
i=1

Infi( f ) . (4.5)

Here we give a relation between degree and sensitivity due to Shi [64]: average sensitivity lower bounds
the degree of approximating polynomials. Suppose a degree-d n-variate real polynomial p : {0,1}n →
[0,1] approximates f : {0,1}n → {0,1}, in the sense that there is an ε ∈ [0,1/2) such that | f (x)−
p(x)| ≤ ε for every x ∈ {0,1}n. Let q be the degree-d polynomial 1−2p. This has range [−1,1], hence
∑S q̂(S)2 = ||q||22 ≤ 1. Note that q(x) ∈ [−1,−1 + 2ε] if f (x) = 1, and q(x) ∈ [1− 2ε,1] if f (x) = 0.
Consider the function q(i)(x) = q(x)−q(x⊕ ei). Using Parseval and the analogue of Eq. (4.4), we have

(2−4ε)2Infi( f )≤ E[(q(i))2] = ∑
S

q̂(i)(S)2 = 4 ∑
S:i∈S

q̂(S)2.

Dividing by 4 and summing over all i gives the lower bound on the degree:

(1−2ε)2s( f ) = (1−2ε)2
n

∑
i=1

Infi( f )≤
n

∑
i=1

∑
S:i∈S

q̂(S)2 = ∑
S
|S|q̂(S)2 ≤ d ∑

S
q̂(S)2 ≤ d .

3See the survey [15]. Other Fourier-based results on polynomial degrees are in [56, 62, 14]. This section does not need the
Bonami-Beckner or KKL Inequalities, but is placed after Section 4.3 because it considers the influences defined there.
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A random Boolean function has s( f ) ≈ n/2 and ε-approximate degree at least n/2−O(
√

n) [2] (for
fixed ε), hence this bound is optimal up to constant factors for almost all n-bit functions.

Another Fourier-based lower bound on the degree is due to Nisan and Szegedy [52]. Suppose f :
{0,1}n → {0,1} depends on all of its n variables (equivalently, each variable has positive influence).
Consider f (i)(x) = f (x)− f (x⊕ ei). This is an n-variate polynomial of degree d ≤ deg( f ), and it is
non-constant because f depends on xi. It is well known that such a polynomial is non-zero on at least a
2−d-fraction of its inputs.4 Hence

Infi( f ) = Pr[ f (i) 6= 0]≥ 2−deg( f )

for each i. Summing over i we get

n
2deg( f ) ≤

n

∑
i=1

Infi( f ) =
n

∑
i=1

∑
S

f̂ (i)(S)2 = 4∑
S
|S| f̂ (S)2 ≤ 4 deg( f )∑

S
f̂ (S)2 ≤ 4 deg( f ) .

This implies the bound from [52]:

deg( f )≥ log(n)−O(log logn)

for every Boolean function f that depends on n variables. As Nisan and Szegedy observed, the “ad-
dress function” shows that this bound is tight up to the O(log logn) term. This function takes an input
x1 . . .xmy0 . . .y2m−1 of n = m+2m bits, and outputs yi where i is the number whose binary representation
is x1 . . .xm. The function depends on all n variables. It is represented by

∑
i∈{0,1}m

yi ∏
j:i j=1

x j ∏
j:i j=0

(1− x j)

and hence has degree m+1 ≤ logn+1.

5 A guide to literature

The examples given above illustrate the usefulness of Fourier analysis on the Boolean cube, but they
barely scratch the surface of the rich set of actual and potential applications. In this last section we give
pointers to the other main areas of application in computer science.

PCPs and hardness of approximation. Possibly the most important application of Fourier analysis
in theoretical computer science is its use in designing and analyzing Probabilistically Checkable Proofs.
These are encodings of witnesses for NP-like problems that can be verified probabilistically while query-
ing only a small number of their bits. The famous PCP Theorem [4, 17] says that a language is in NP if,
and only if, it has witnesses that can be verified probabilistically using only O(logn) bits of randomness
and a constant number of queries to bits of the witness. Some of the most efficient PCPs are based
on Fourier analysis, Håstad’s 3-query PCP being a prime example [31]. Based on these PCPs, one can

4This is a basic and well known property of Reed-Muller error-correcting codes [47, p. 375]. In the computer science
literature this fact is usually called the Schwartz-Zippel Lemma [61, 69].
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show NP-hardness results for approximations to many optimization problems, such as finding a maxi-
mal clique in a graph or the maximal number of satisfied clauses in a given CNF formula. Chapters 11
and 22 of the book by Arora and Barak [3] give a good introduction to this material.

A recent development is the use of the “Unique Games Conjecture.” This conjecture, due to
Khot [37], says that it is hard to approximate the maximal number of satisfied constraints in problems
with only two variables per constraint, where the value of either variable in a constraint determines the
value of the other (the variables are over a sufficiently large but constant domain). Assuming this, one
can prove essentially optimal inapproximability results for problems like max-cut [38], vertex cover [40],
and others [16, 41, 19, 39, 59], which so far resisted the more standard inapproximability approach via
PCPs. Again, Fourier techniques are often essential in the analysis. For instance, one of the main planks
of the max-cut result is the “Majority Is Stablest” Theorem. This was conjectured in a first version
of [38] and proved in [49]. It says that among all balanced Boolean functions where every variable
has low influence, the majority function has the maximal correlation between f and its noisy version
f̃ = Tρ( f ) (as defined in Section 4.1).

Threshold phenomena. A threshold phenomenon occurs if certain properties of a system change
sharply in response to a small change of an underlying parameter which is close to a specific value
(the “threshold”). A typical example in nature is water, which is frozen if the temperature-parameter
is just below 0◦C and liquid if the temperature is just above 0◦C. In mathematics, such phenomena
occur for instance in random graphs. Let G(n, p) denote an undirected graph on n vertices, where each
edge is included with probability p (independent of the other edges). Erdős and Rényi [20] introduced
this model and showed a sharp threshold for connectivity: if p is slightly below (logn)/n then the
probability of G(n, p) being connected tends to 0 with n, while if p is slightly larger than (logn)/n then
this probability tends to 1. Friedgut and Kalai [24] later showed that every monotone graph property has
a sharp threshold.

Threshold phenomena occur also in complexity theory. For instance, if one picks a random 3-
SAT formula with n variables and m = cn clauses, then for c < 4.2 (roughly5), the formula is most
probably satisfiable, while for c > 4.2 the formula is most probably unsatisfiable. Similarly, one can
view tight results on hardness of approximation as threshold phenomena: for many NP-hard optimization
problems, there exists a constant c such that approximating the optimal value up to factor c can be done in
polynomial time, while approximating it to within a slightly better factor is NP-hard (or Unique-Games
hard). Kalai and Safra [36] give a very interesting survey of these phenomena, showing how influences
and Fourier techniques are central to their analysis. Often these techniques apply to the generalized
setting where each input bit is 1 with probability p.

Social choice theory. If n people have to decide between two alternatives then they can use majority
voting, which has all the properties one expects of a reasonable voting scheme. However, as soon
as they have to choose between three or more alternatives, Arrow’s Theorem [5] says that no “ideal”
voting scheme exists. Strong quantitative versions of this theorem can be obtained quite easily using

5Actually this value of 4.2 is a numerical estimate; proven upper and lower bounds on this number are far from tight. We
refer to Part 3 of [58] for details.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS TCGS 1 (2008), pp. 1–20 13



RONALD DE WOLF

Fourier techniques. The surveys by Kalai [35] and O’Donnell [54] are excellent starting points for such
connections between Fourier analysis and social choice theory. A very recent related result is [26].

When are functions close to juntas? Recall that a k-junta is a function on {0,1}n that depends on at
most k of its variables. Friedgut [22] showed that if the average sensitivity (a. k. a. total influence) of a
Boolean function f is I then f is close to another Boolean function that is a 2O(I)-junta. The “address
function” from Section 4.4 shows the exponential is necessary: it has average sensitivity O(logn) but
cannot be approximated well by a Boolean function depending on only o(n) variables. Friedgut et
al. [25] show that if the Fourier coefficients of degrees 0 and 1 have most of the total weight, then f is
close to a 1-junta (i. e., a dictator or its negation). Bourgain [11] proved that the weight on higher-degree
Fourier coefficients of a balanced Boolean function cannot decay too fast unless f is close to a junta, and
Dinur et al. [18] analyzed the same phenomenon for bounded—but not necessarily Boolean—functions
on the Boolean cube.

Other applications. Some results in the area of property testing are based on Fourier analysis. Ex-
amples are the algorithm by Fischer et al. [21] for testing if a Boolean function is close to or far from a
k-junta, and the one by Alon et al. [1] for testing if a distribution is close to or far from (almost) k-wise
independence. The above-mentioned work on PCPs also falls in this category, since one is basically
testing whether a given witness is close to a valid proof or not. In addition to the list-decoding example
from Section 3.2, there have been a number of other applications of Fourier analysis in coding theory,
see for instance Section 4.3 of Linial’s course notes (mentioned below) and Navon and Samorodnit-
sky [51]. Fourier analysis has also been used for lower bounds on various kinds of communication
complexity [60, 42, 27, 63], and for analysis of low-distortion embeddings of one metric space into
another [45, 41].

Other expository papers and courses. Several more extensive surveys on Fourier analysis of Boolean
functions exist in the literature. The early one by Bernasconi, Codenotti, and Simon [9] describes the
main applications up to 1997. Štefankovič’s MSc thesis [65] is geared towards general applications of
Fourier analysis in computer science, often over groups other than the Boolean cube. The survey by
Kalai and Safra [36] concentrates on threshold phenomena. The very recent survey by O’Donnell [54]
focuses on topics related to voting and hardness of approximation, and also tries to demystify the
Bonami-Beckner Inequality by presenting it as a generalization of the Hoeffding-Chernoff bounds to
higher-degree functions. Finally, let us point to the notes of a number of recent courses, which contain a
wealth of additional material:

Irit Dinur and Ehud Friedgut: http://www.cs.huji.ac.il/∼analyt
Subhash Khot: http://www.cc.gatech.edu/∼khot/Fourier.htm
Guy Kindler: http://dimacs.rutgers.edu/∼gkindler/boolean-course
Nati Linial: http://www.cs.huji.ac.il/∼nati/PAPERS/uw
Elchanan Mossel: http://www.stat.berkeley.edu/%7Emossel/teach/206af05
Ryan O’Donnell: http://www.cs.cmu.edu/∼odonnell/boolean-analysis
Oded Regev: http://www.cs.tau.ac.il/∼odedr/teaching/analysis fall 2007
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